Abstract:Buddha statues are a part of human culture, especially of the Asia area, and they have been alongside human civilisation for more than 2,000 years. As history goes by, due to wars, natural disasters, and other reasons, the records that show the built years of Buddha statues went missing, which makes it an immense work for historians to estimate the built years. In this paper, we pursue the idea of building a neural network model that automatically estimates the built years of Buddha statues based only on their face images. Our model uses a loss function that consists of three terms: an MSE loss that provides the basis for built year estimation; a KL divergence-based loss that handles the samples with both an exact built year and a possible range of built years (e.g., dynasty or centuries) estimated by historians; finally a regularisation that utilises both labelled and unlabelled samples based on manifold assumption. By combining those three terms in the training process, we show that our method is able to estimate built years for given images with 37.5 years of a mean absolute error on the test set.
Abstract:While Buddhism has spread along the Silk Roads, many pieces of art have been displaced. Only a few experts may identify these works, subjectively to their experience. The construction of Buddha statues was taught through the definition of canon rules, but the applications of those rules greatly varies across time and space. Automatic art analysis aims at supporting these challenges. We propose to automatically recover the proportions induced by the construction guidelines, in order to use them and compare between different deep learning features for several classification tasks, in a medium size but rich dataset of Buddha statues, collected with experts of Buddhism art history.
Abstract:We introduce BUDA.ART, a system designed to assist researchers in Art History, to explore and analyze an archive of pictures of Buddha statues. The system combines different CBIR and classical retrieval techniques to assemble 2D pictures, 3D statue scans and meta-data, that is focused on the Buddha facial characteristics. We build the system from an archive of 50,000 Buddhism pictures, identify unique Buddha statues, extract contextual information, and provide specific facial embedding to first index the archive. The system allows for mobile, on-site search, and to explore similarities of statues in the archive. In addition, we provide search visualization and 3D analysis of the statues