Abstract:Large language models (LLMs) have attracted significant attention in recent years. Due to their "Large" nature, training LLMs from scratch consumes immense computational resources. Since several major players in the artificial intelligence (AI) field have open-sourced their original LLMs, an increasing number of individual researchers and smaller companies are able to build derivative LLMs based on these open-sourced models at much lower costs. However, this practice opens up possibilities for unauthorized use or reproduction that may not comply with licensing agreements, and deriving models can change the model's behavior, thus complicating the determination of model ownership. Current copyright protection schemes for LLMs are either designed for white-box settings or require additional modifications to the original model, which restricts their use in real-world settings. In this paper, we propose ProFLingo, a black-box fingerprinting-based copyright protection scheme for LLMs. ProFLingo generates adversarial examples (AEs) that can represent the unique decision boundary characteristics of an original model, thereby establishing unique fingerprints. Our scheme checks the effectiveness of these adversarial examples on a suspect model to determine whether it has been derived from the original model. ProFLingo offers a non-invasive approach, which neither requires knowledge of the suspect model nor modifications to the base model or its training process. To the best of our knowledge, our method represents the first black-box fingerprinting technique for copyright protection for LLMs. Our source code and generated AEs are available at: https://github.com/hengvt/ProFLingo_arXiv.
Abstract:Federated learning is known for its capability to safeguard participants' data privacy. However, recently emerged model inversion attacks (MIAs) have shown that a malicious parameter server can reconstruct individual users' local data samples through model updates. The state-of-the-art attacks either rely on computation-intensive search-based optimization processes to recover each input batch, making scaling difficult, or they involve the malicious parameter server adding extra modules before the global model architecture, rendering the attacks too conspicuous and easily detectable. To overcome these limitations, we propose Scale-MIA, a novel MIA capable of efficiently and accurately recovering training samples of clients from the aggregated updates, even when the system is under the protection of a robust secure aggregation protocol. Unlike existing approaches treating models as black boxes, Scale-MIA recognizes the importance of the intricate architecture and inner workings of machine learning models. It identifies the latent space as the critical layer for breaching privacy and decomposes the complex recovery task into an innovative two-step process to reduce computation complexity. The first step involves reconstructing the latent space representations (LSRs) from the aggregated model updates using a closed-form inversion mechanism, leveraging specially crafted adversarial linear layers. In the second step, the whole input batches are recovered from the LSRs by feeding them into a fine-tuned generative decoder. We implemented Scale-MIA on multiple commonly used machine learning models and conducted comprehensive experiments across various settings. The results demonstrate that Scale-MIA achieves excellent recovery performance on different datasets, exhibiting high reconstruction rates, accuracy, and attack efficiency on a larger scale compared to state-of-the-art MIAs.