Abstract:This work describes the architecture and vision of designing and implementing a new test infrastructure for 6G physical layer research at KU Leuven. The Testbed is designed for physical layer research and experimentation following several emerging trends, such as cell-free networking, integrated communication, sensing, open disaggregated Radio Access Networks, AI-Native design, and multiband operation. The software is almost entirely based on free and open-source software, making contributing and reusing any component easy. The open Testbed is designed to provide real-time and labeled data on all parts of the physical layer, from raw IQ data to synchronization statistics, channel state information, or symbol/bit/packet error rates. Real-time labeled datasets can be collected by synchronizing the physical layer data logging with a positioning and motion capture system. One of the main goals of the design is to make it open and accessible to external users remotely. Most tests and data captures can easily be automated, and experiment code can be remotely deployed using standard containers (e.g., Docker or Podman). Finally, the paper describes how the Testbed can be used for our research on joint communication and sensing, over-the-air synchronization, distributed processing, and AI in the loop.
Abstract:This paper investigates the use of Neural Network (NN) nonlinear modelling for Power Amplifier (PA) linearization in the Walsh-Hadamard transceiver architecture. This novel architecture has recently been proposed for ultra-high bandwidth systems to reduce the transceiver power consumption by extensive parallelization of the digital baseband hardware. The parallelization is achieved by replacing two-dimensional quadrature modulation with multi-dimensional Walsh-Hadamard modulation. The open research question for this architecture is whether conventional baseband signal processing algorithms can be similarly parallelized while retaining their performance. A key baseband algorithm, digital predistortion using NN models for PA linearization, will be adapted to the parallel Walsh architecture. A straighforward parallelization of the state-of-the-art NN architecture is extended with a cross-domain Knowledge Distillation pre-training method to achieve linearization performance on par with the quadrature implementation. This result paves the way for the entire baseband processing chain to be adapted into ultra-high bandwidth, low-power Walsh transceivers.