Abstract:Unmanned aerial vehicles are becoming common and have many productive uses. However, their increased prevalence raises safety concerns -- how can we protect restricted airspace? Knowing the type of unmanned aerial vehicle can go a long way in determining any potential risks it carries. For instance, fixed-wing craft can carry more weight over longer distances, thus potentially posing a more significant threat. This paper presents a machine learning model for classifying unmanned aerial vehicles as quadrotor, hexarotor, or fixed-wing. Our approach effectively applies a Long-Short Term Memory (LSTM) neural network for the purpose of time series classification. We performed experiments to test the effects of changing the timestamp sampling method and addressing the imbalance in the class distribution. Through these experiments, we identified the top-performing sampling and class imbalance fixing methods. Averaging the macro f-scores across 10 folds of data, we found that the majority quadrotor class was predicted well (98.16%), and, despite an extreme class imbalance, the model could also predicted a majority of fixed-wing flights correctly (73.15%). Hexarotor instances were often misclassified as quadrotors due to the similarity of multirotors in general (42.15%). However, results remained relatively stable across certain methods, which prompted us to analyze and report on their tradeoffs. The supplemental material for this paper, including the code and data for running all the experiments and generating the results tables, is available at https://osf.io/mnsgk/.
Abstract:We present ORBIT, a unified and modular framework for robot learning powered by NVIDIA Isaac Sim. It offers a modular design to easily and efficiently create robotic environments with photo-realistic scenes and fast and accurate rigid and deformable body simulation. With ORBIT, we provide a suite of benchmark tasks of varying difficulty -- from single-stage cabinet opening and cloth folding to multi-stage tasks such as room reorganization. To support working with diverse observations and action spaces, we include fixed-arm and mobile manipulators with different physically-based sensors and motion generators. ORBIT allows training reinforcement learning policies and collecting large demonstration datasets from hand-crafted or expert solutions in a matter of minutes by leveraging GPU-based parallelization. In summary, we offer an open-sourced framework that readily comes with 16 robotic platforms, 4 sensor modalities, 10 motion generators, more than 20 benchmark tasks, and wrappers to 4 learning libraries. With this framework, we aim to support various research areas, including representation learning, reinforcement learning, imitation learning, and task and motion planning. We hope it helps establish interdisciplinary collaborations in these communities, and its modularity makes it easily extensible for more tasks and applications in the future. For videos, documentation, and code: https://isaac-orbit.github.io/.