Abstract:The field of learning analytics has made notable strides in automating the detection of complex learning processes in multimodal data. However, most advancements have focused on individualized problem-solving instead of collaborative, open-ended problem-solving, which may offer both affordances (richer data) and challenges (low cohesion) to behavioral prediction. Here, we extend predictive models to automatically detect socially shared regulation of learning (SSRL) behaviors in collaborative computational modeling environments using embedding-based approaches. We leverage large language models (LLMs) as summarization tools to generate task-aware representations of student dialogue aligned with system logs. These summaries, combined with text-only embeddings, context-enriched embeddings, and log-derived features, were used to train predictive models. Results show that text-only embeddings often achieve stronger performance in detecting SSRL behaviors related to enactment or group dynamics (e.g., off-task behavior or requesting assistance). In contrast, contextual and multimodal features provide complementary benefits for constructs such as planning and reflection. Overall, our findings highlight the promise of embedding-based models for extending learning analytics by enabling scalable detection of SSRL behaviors, ultimately supporting real-time feedback and adaptive scaffolding in collaborative learning environments that teachers value.
Abstract:Collaborative dialogue offers rich insights into students' learning and critical thinking. This is essential for adapting pedagogical agents to students' learning and problem-solving skills in STEM+C settings. While large language models (LLMs) facilitate dynamic pedagogical interactions, potential hallucinations can undermine confidence, trust, and instructional value. Retrieval-augmented generation (RAG) grounds LLM outputs in curated knowledge, but its effectiveness depends on clear semantic links between user input and a knowledge base, which are often weak in student dialogue. We propose log-contextualized RAG (LC-RAG), which enhances RAG retrieval by incorporating environment logs to contextualize collaborative discourse. Our findings show that LC-RAG improves retrieval over a discourse-only baseline and allows our collaborative peer agent, Copa, to deliver relevant, personalized guidance that supports students' critical thinking and epistemic decision-making in a collaborative computational modeling environment, XYZ.
Abstract:LLMs have demonstrated proficiency in contextualizing their outputs using human input, often matching or beating human-level performance on a variety of tasks. However, LLMs have not yet been used to characterize synergistic learning in students' collaborative discourse. In this exploratory work, we take a first step towards adopting a human-in-the-loop prompt engineering approach with GPT-4-Turbo to summarize and categorize students' synergistic learning during collaborative discourse. Our preliminary findings suggest GPT-4-Turbo may be able to characterize students' synergistic learning in a manner comparable to humans and that our approach warrants further investigation.