Abstract:Combined, joint, intra-governmental, inter-agency and multinational (CJIIM) operations require rapid data sharing without the bottlenecks of metadata curation and alignment. Curation and alignment is particularly infeasible for external open source information (OSINF), e.g., social media, which has become increasingly valuable in understanding unfolding situations. Large language models (transformers) facilitate semantic data and metadata alignment but are inefficient in CJIIM settings characterised as denied, degraded, intermittent and low bandwidth (DDIL). Vector symbolic architectures (VSA) support semantic information processing using highly compact binary vectors, typically 1-10k bits, suitable in a DDIL setting. We demonstrate a novel integration of transformer models with VSA, combining the power of the former for semantic matching with the compactness and representational structure of the latter. The approach is illustrated via a proof-of-concept OSINF data discovery portal that allows partners in a CJIIM operation to share data sources with minimal metadata curation and low communications bandwidth. This work was carried out as a bridge between previous low technology readiness level (TRL) research and future higher-TRL technology demonstration and deployment.
Abstract:This work reveals an evidential signal that emerges from the uncertainty value in Evidential Deep Learning (EDL). EDL is one example of a class of uncertainty-aware deep learning approaches designed to provide confidence (or epistemic uncertainty) about the current test sample. In particular for computer vision and bidirectional encoder large language models, the `evidential signal' arising from the Dirichlet strength in EDL can, in some cases, discriminate between classes, which is particularly strong when using large language models. We hypothesise that the KL regularisation term causes EDL to couple aleatoric and epistemic uncertainty. In this paper, we empirically investigate the correlations between misclassification and evaluated uncertainty, and show that EDL's `evidential signal' is due to misclassification bias. We critically evaluate EDL with other Dirichlet-based approaches, namely Generative Evidential Neural Networks (EDL-GEN) and Prior Networks, and show theoretically and empirically the differences between these loss functions. We conclude that EDL's coupling of uncertainty arises from these differences due to the use (or lack) of out-of-distribution samples during training.