Abstract:In multi-cell massive MIMO systems, channel estimation is deteriorated by pilot contamination and the effects of pilot contamination become more severe due to hardware impairments. In this paper, we propose a joint pilot design and channel estimation based on deep residual learning in order to mitigate the effects of pilot contamination under the consideration of hardware impairments. We first investigate a conventional linear minimum mean square error (LMMSE) based channel estimator to suppress the interference caused by pilot contamination. After that, a deep learning based pilot design is proposed to minimize the mean square error (MSE) of LMMSE channel estimation, which is utilized to the joint pilot design and channel estimator for transfer learning approach. For the channel estimator, we use a deep residual learning which extracts the features of interference caused by pilot contamination and eliminates them to estimate the channel information. Simulation results demonstrate that the proposed joint pilot design and channel estimator outperforms the conventional approach in multi-cell massive MIMO scenarios. Furthermore, the joint pilot design and channel estimator using transfer learning enhances the estimation performance by reducing the effects of pilot contamination when the prior knowledge of pilot contamination cannot be exploited.
Abstract:Integrated access and backhaul (IAB) network is envisioned as a novel network architecture for increasing the network capacity and coverage. To facilitate the IAB network, the appropriate methods of wireless link association and resource management are required. In this paper, we investigate the joint optimization problem of association and resource allocation in terms of subchannel and power for IAB network. In particular, we handle the association and resource allocation problems for wireless backhaul and access links considering multi-hop backhauling. Since the optimization problem for IAB network is formulated as a mixed integer non-linear programming (MINLP), we divide it into three subproblems for association, subchannel allocation, and power allocation, respectively, and these subproblems are solved alternatively to obtain a local optimal solution. For the association problem, we adopt the Lagrangian duality approach to configure the backhaul and access links and successive convex approximation (SCA) approach is used to solve the subchannel and power allocation problems efficiently. Simulation results demonstrate that the proposed algorithm achieves better performance than single-hop backhauling based network and enhances the capacity and coverage by configuring the multi-hop backhauling.
Abstract:In this article, we study the problem of air-to-ground ultra-reliable and low-latency communication (URLLC) for a moving ground user. This is done by controlling multiple unmanned aerial vehicles (UAVs) in real time while avoiding inter-UAV collisions. To this end, we propose a novel multi-agent deep reinforcement learning (MADRL) framework, coined a graph attention exchange network (GAXNet). In GAXNet, each UAV constructs an attention graph locally measuring the level of attention to its neighboring UAVs, while exchanging the attention weights with other UAVs so as to reduce the attention mismatch between them. Simulation results corroborates that GAXNet achieves up to 4.5x higher rewards during training. At execution, without incurring inter-UAV collisions, GAXNet achieves 6.5x lower latency with the target 0.0000001 error rate, compared to a state-of-the-art baseline framework.