Abstract:6G wireless technology is projected to adopt higher and wider frequency bands, enabled by highly directional beamforming. However, the vast bandwidths available also make the impact of beam squint in massive multiple input and multiple output (MIMO) systems non-negligible. Traditional approaches such as adding a true-time-delay line (TTD) on each antenna are costly due to the massive antenna arrays required. This paper puts forth a signal processing alternative, specifically adapted to the multicarrier structure of OFDM systems, through an innovative application of Graph Neural Networks (GNNs) to optimize hybrid beamforming. By integrating two types of graph nodes to represent the analog and the digital beamforming matrices efficiently, our approach not only reduces the computational and memory burdens but also achieves high spectral efficiency performance, approaching that of all digital beamforming. The GNN runtime and memory requirement are at a fraction of the processing time and resource consumption of traditional signal processing methods, hence enabling real-time adaptation of hybrid beamforming. Furthermore, the proposed GNN exhibits strong resiliency to beam squinting, achieving almost constant spectral efficiency even as the system bandwidth increases at higher carrier frequencies.
Abstract:We propose a graph neural network (GNN) architecture to optimize base station (BS) beamforming and reconfigurable intelligent surface (RIS) phase shifts in a multi-RIS assisted wireless network. We create a bipartite graph model to represent a network with multi-RIS, then construct the GNN architecture by exploiting channel information as node and edge features. We employ a message passing mechanism to enable information exchange between RIS nodes and user nodes and facilitate the inference of interference. Each node also maintains a representation vector which can be mapped to the BS beamforming or RIS phase shifts output. Message generation and update of the representation vector at each node are performed using two unsupervised neural networks, which are trained off-line and then used on all nodes of the same type. Simulation results demonstrate that the proposed GNN architecture provides strong scalability with network size, generalizes to different settings, and significantly outperforms conventional algorithms.
Abstract:As next generation cellular networks become denser, associating users with the optimal base stations at each time while ensuring no base station is overloaded becomes critical for achieving stable and high network performance. We propose multi-agent online Q-learning (QL) algorithms for performing real-time load balancing user association and handover in dense cellular networks. The load balancing constraints at all base stations couple the actions of user agents, and we propose two multi-agent action selection policies, one centralized and one distributed, to satisfy load balancing at every learning step. In the centralized policy, the actions of UEs are determined by a central load balancer (CLB) running an algorithm based on swapping the worst connection to maximize the total learning reward. In the distributed policy, each UE takes an action based on its local information by participating in a distributed matching game with the BSs to maximize the local reward. We then integrate these action selection policies into an online QL algorithm that adapts in real-time to network dynamics including channel variations and user mobility, using a reward function that considers a handover cost to reduce handover frequency. The proposed multi-agent QL algorithm features low-complexity and fast convergence, outperforming 3GPP max-SINR association. Both policies adapt well to network dynamics at various UE speed profiles from walking, running, to biking and suburban driving, illustrating their robustness and real-time adaptability.
Abstract:Convolutional Neural Networks (CNNs) achieve high performance in image classification tasks but are challenging to deploy on resource-limited hardware due to their large model sizes. To address this issue, we leverage Mutual Information, a metric that provides valuable insights into how deep learning models retain and process information through measuring the shared information between input features or output labels and network layers. In this study, we propose a structured filter-pruning approach for CNNs that identifies and selectively retains the most informative features in each layer. Our approach successively evaluates each layer by ranking the importance of its feature maps based on Conditional Mutual Information (CMI) values, computed using a matrix-based Renyi {\alpha}-order entropy numerical method. We propose several formulations of CMI to capture correlation among features across different layers. We then develop various strategies to determine the cutoff point for CMI values to prune unimportant features. This approach allows parallel pruning in both forward and backward directions and significantly reduces model size while preserving accuracy. Tested on the VGG16 architecture with the CIFAR-10 dataset, the proposed method reduces the number of filters by more than a third, with only a 0.32% drop in test accuracy.