Abstract:In this work, we investigate the use of co-design methods to iterate upon robot designs in the field, performing time sensitive, ad-hoc tasks. Our method optimizes the morphology and wheg trajectory for a MiniRHex robot, producing 3D printable structures and leg trajectory parameters. Tested in four terrains, we show that robots optimized in simulation exhibit strong sim-to-real transfer and are nearly twice as efficient as the nominal platform when tested in hardware.
Abstract:Robotic adaptation to unanticipated operating conditions is crucial to achieving persistence and robustness in complex real world settings. For a wide range of cutting-edge robotic systems, such as micro- and nano-scale robots, soft robots, medical robots, and bio-hybrid robots, it is infeasible to anticipate the operating environment a priori due to complexities that arise from numerous factors including imprecision in manufacturing, chemo-mechanical forces, and poorly understood contact mechanics. Drawing inspiration from data-driven modeling, geometric mechanics (or gauge theory), and adaptive control, we employ an adaptive system identification framework and demonstrate its efficacy in enhancing the performance of principally kinematic locomotors (those governed by Rayleigh dissipation or zero momentum conservation). We showcase the capability of the adaptive model to efficiently accommodate varying terrains and iteratively modified behaviors within a behavior optimization framework. This provides both the ability to improve fundamental behaviors and perform motion tracking to precision. Notably, we are capable of optimizing the gaits of the Purcell swimmer using approximately 10 cycles per link, which for the nine-link Purcell swimmer provides a factor of ten improvement in optimization speed over the state of the art. Beyond simply a computational speed up, this ten-fold improvement may enable this method to be successfully deployed for in-situ behavior refinement, injury recovery, and terrain adaptation, particularly in domains where simulations provide poor guides for the real world.
Abstract:To achieve high-dexterity motion planning on floating-base systems, the base dynamics induced by arm motions must be treated carefully. In general, it is a significant challenge to establish a fixed-base frame during tasking due to forces and torques on the base that arise directly from arm motions (e.g. arm drag in low Reynolds environments and arm momentum in high Reynolds environments). While thrusters can in theory be used to regulate the vehicle pose, it is often insufficient to establish a stable pose for precise tasking, whether the cause be due to underactuation, modeling inaccuracy, suboptimal control parameters, or insufficient power. We propose a solution that asks the thrusters to do less high bandwidth perturbation correction by planning arm motions that induce zero perturbation on the base. We are able to cast our motion planner as a nonholonomic rapidly-exploring random tree (RRT) by representing the floating-base dynamics as pfaffian constraints on joint velocity. These constraints guide the manipulators to move on zero-perturbation manifolds (which inhabit a subspace of the tangent space of the internal configuration space). To invoke this representation (termed a \textit{perturbation map}) we assume the body velocity (perturbation) of the base to be a joint-defined linear mapping of joint velocity and describe situations where this assumption is realistic (including underwater, aerial, and orbital environments). The core insight of this work is that when perturbation of the floating-base has affine structure with respect to joint velocity, it provides the system a class of kinematic reduction that permits the use of sample-based motion planners (specifically a nonholonomic RRT). We show that this allows rapid, exploration-geared motion planning for high degree of freedom systems in obstacle rich environments, even on floating-base systems with nontrivial dynamics.
Abstract:It is challenging to perform identification on soft robots due to their underactuated, high dimensional dynamics. In this work, we present a data-driven modeling framework, based on geometric mechanics (also known as gauge theory), that can be applied to systems with low-bandwidth actuation of the shape space. By exploiting temporal asymmetries in actuator dynamics, our approach enables the design of robots that can be driven by a single control input. We present a method for constructing a series connected model comprising actuator and locomotor dynamics based on data points from stochastically perturbed, repeated behaviors around the observed limit cycle. We demonstrate our methods on a real-world example of a soft crawler made by stimuli-responsive hydrogels that locomotes on merely one cycling control signal by utilizing its geometric and temporal asymmetry. For systems with first-order, low-pass actuator dynamics, such as swelling-driven actuators used in hydrogel crawlers, we show that first order Taylor approximations can well capture the dynamics of the system shape as well as its movements. Finally, we propose an approach of numerically optimizing control signals by iteratively refining models and optimizing the input waveform.