Abstract:Knowledge Distillation (KD) could transfer the ``dark knowledge" of a well-performed yet large neural network to a weaker but lightweight one. From the view of output logits and softened probabilities, this paper goes deeper into the dark knowledge provided by teachers with different capacities. Two fundamental observations are: (1) a larger teacher tends to produce probability vectors that are less distinct between non-ground-truth classes; (2) teachers with different capacities are basically consistent in their cognition of relative class affinity. Abundant experimental studies verify these observations and in-depth empirical explanations are provided. The difference in dark knowledge leads to the peculiar phenomenon named ``capacity mismatch" that a more accurate teacher does not necessarily perform as well as a smaller teacher when teaching the same student network. Enlarging the distinctness between non-ground-truth class probabilities for larger teachers could address the capacity mismatch problem. This paper explores multiple simple yet effective ways to achieve this goal and verify their success by comparing them with popular KD methods that solve the capacity mismatch.
Abstract:Differing from traditional semi-supervised learning, class-imbalanced semi-supervised learning presents two distinct challenges: (1) The imbalanced distribution of training samples leads to model bias towards certain classes, and (2) the distribution of unlabeled samples is unknown and potentially distinct from that of labeled samples, which further contributes to class bias in the pseudo-labels during training. To address these dual challenges, we introduce a novel approach called \textbf{T}wice \textbf{C}lass \textbf{B}ias \textbf{C}orrection (\textbf{TCBC}). We begin by utilizing an estimate of the class distribution from the participating training samples to correct the model, enabling it to learn the posterior probabilities of samples under a class-balanced prior. This correction serves to alleviate the inherent class bias of the model. Building upon this foundation, we further estimate the class bias of the current model parameters during the training process. We apply a secondary correction to the model's pseudo-labels for unlabeled samples, aiming to make the assignment of pseudo-labels across different classes of unlabeled samples as equitable as possible. Through extensive experimentation on CIFAR10/100-LT, STL10-LT, and the sizable long-tailed dataset SUN397, we provide conclusive evidence that our proposed TCBC method reliably enhances the performance of class-imbalanced semi-supervised learning.
Abstract:Due to the advantages of leveraging unlabeled data and learning meaningful representations, semi-supervised learning and contrastive learning have been progressively combined to achieve better performances in popular applications with few labeled data and abundant unlabeled data. One common manner is assigning pseudo-labels to unlabeled samples and selecting positive and negative samples from pseudo-labeled samples to apply contrastive learning. However, the real-world data may be imbalanced, causing pseudo-labels to be biased toward the majority classes and further undermining the effectiveness of contrastive learning. To address the challenge, we propose Contrastive Learning with Augmented Features (CLAF). We design a class-dependent feature augmentation module to alleviate the scarcity of minority class samples in contrastive learning. For each pseudo-labeled sample, we select positive and negative samples from labeled data instead of unlabeled data to compute contrastive loss. Comprehensive experiments on imbalanced image classification datasets demonstrate the effectiveness of CLAF in the context of imbalanced semi-supervised learning.