Abstract:Full projector compensation is a practical task of projector-camera systems. It aims to find a projector input image, named compensation image, such that when projected it cancels the geometric and photometric distortions due to the physical environment and hardware. State-of-the-art methods use deep learning to address this problem and show promising performance for low-resolution setups. However, directly applying deep learning to high-resolution setups is impractical due to the long training time and high memory cost. To address this issue, this paper proposes a practical full compensation solution. Firstly, we design an attention-based grid refinement network to improve geometric correction quality. Secondly, we integrate a novel sampling scheme into an end-to-end compensation network to alleviate computation and introduce attention blocks to preserve key features. Finally, we construct a benchmark dataset for high-resolution projector full compensation. In experiments, our method demonstrates clear advantages in both efficiency and quality.
Abstract:Mail privacy protection aims to prevent unauthorized access to hidden content within an envelope since normal paper envelopes are not as safe as we think. In this paper, for the first time, we show that with a well designed deep learning model, the hidden content may be largely recovered without opening the envelope. We start by modeling deep learning-based privacy attacks on physical mail content as learning the mapping from the camera-captured envelope front face image to the hidden content, then we explicitly model the mapping as a combination of perspective transformation, image dehazing and denoising using a deep convolutional neural network, named Neural-STE (See-Through-Envelope). We show experimentally that hidden content details, such as texture and image structure, can be clearly recovered. Finally, our formulation and model allow us to design envelopes that can counter deep learning-based privacy attacks on physical mail.
Abstract:Light-based adversarial attacks aim to fool deep learning-based image classifiers by altering the physical light condition using a controllable light source, e.g., a projector. Compared with physical attacks that place carefully designed stickers or printed adversarial objects, projector-based ones obviate modifying the physical entities. Moreover, projector-based attacks can be performed transiently and dynamically by altering the projection pattern. However, existing approaches focus on projecting adversarial patterns that result in clearly perceptible camera-captured perturbations, while the more interesting yet challenging goal, stealthy projector-based attack, remains an open problem. In this paper, for the first time, we formulate this problem as an end-to-end differentiable process and propose Stealthy Projector-based Adversarial Attack (SPAA). In SPAA, we approximate the real project-and-capture operation using a deep neural network named PCNet, then we include PCNet in the optimization of projector-based attacks such that the generated adversarial projection is physically plausible. Finally, to generate robust and stealthy adversarial projections, we propose an optimization algorithm that uses minimum perturbation and adversarial confidence thresholds to alternate between the adversarial loss and stealthiness loss optimization. Our experimental evaluations show that the proposed SPAA clearly outperforms other methods by achieving higher attack success rates and meanwhile being stealthier.
Abstract:Full projector compensation aims to modify a projector input image to compensate for both geometric and photometric disturbance of the projection surface. Traditional methods usually solve the two parts separately and may suffer from suboptimal solutions. In this paper, we propose the first end-to-end differentiable solution, named CompenNeSt++, to solve the two problems jointly. First, we propose a novel geometric correction subnet, named WarpingNet, which is designed with a cascaded coarse-to-fine structure to learn the sampling grid directly from sampling images. Second, we propose a novel photometric compensation subnet, named CompenNeSt, which is designed with a siamese architecture to capture the photometric interactions between the projection surface and the projected images, and to use such information to compensate the geometrically corrected images. By concatenating WarpingNet with CompenNeSt, CompenNeSt++ accomplishes full projector compensation and is end-to-end trainable. Third, to improve practicability, we propose a novel synthetic data-based pre-training strategy to significantly reduce the number of training images and training time. Moreover, we construct the first setup-independent full compensation benchmark to facilitate future studies. In thorough experiments, our method shows clear advantages over prior art with promising compensation quality and meanwhile being practically convenient.
Abstract:In projector-camera systems, light transport models the propagation from projector emitted radiance to camera-captured irradiance. In this paper, we propose the first end-to-end trainable solution named Deep Light Transport (DeLTra) that estimates radiometrically uncalibrated projector-camera light transport. DeLTra is designed to have two modules: DepthToAtrribute and ShadingNet. DepthToAtrribute explicitly learns rays, depth and normal, and then estimates rough Phong illuminations. Afterwards, the CNN-based ShadingNet renders photorealistic camera-captured image using estimated shading attributes and rough Phong illuminations. A particular challenge addressed by DeLTra is occlusion, for which we exploit epipolar constraint and propose a novel differentiable direct light mask. Thus, it can be learned end-to-end along with the other DeLTra modules. Once trained, DeLTra can be applied simultaneously to three projector-camera tasks: image-based relighting, projector compensation and depth/normal reconstruction. In our experiments, DeLTra shows clear advantages over previous arts with promising quality and meanwhile being practically convenient.
Abstract:Full projector compensation aims to modify a projector input image such that it can compensate for both geometric and photometric disturbance of the projection surface. Traditional methods usually solve the two parts separately, although they are known to correlate with each other. In this paper, we propose the first end-to-end solution, named CompenNet++, to solve the two problems jointly. Our work non-trivially extends CompenNet, which was recently proposed for photometric compensation with promising performance. First, we propose a novel geometric correction subnet, which is designed with a cascaded coarse-to-fine structure to learn the sampling grid directly from photometric sampling images. Second, by concatenating the geometric correction subset with CompenNet, CompenNet++ accomplishes full projector compensation and is end-to-end trainable. Third, after training, we significantly simplify both geometric and photometric compensation parts, and hence largely improves the running time efficiency. Moreover, we construct the first setup-independent full compensation benchmark to facilitate the study on this topic. In our thorough experiments, our method shows clear advantages over previous arts with promising compensation quality and meanwhile being practically convenient.
Abstract:Projector photometric compensation aims to modify a projector input image such that it can compensate for disturbance from the appearance of projection surface. In this paper, for the first time, we formulate the compensation problem as an end-to-end learning problem and propose a convolutional neural network, named CompenNet, to implicitly learn the complex compensation function. CompenNet consists of a UNet-like backbone network and an autoencoder subnet. Such architecture encourages rich multi-level interactions between the camera-captured projection surface image and the input image, and thus captures both photometric and environment information of the projection surface. In addition, the visual details and interaction information are carried to deeper layers along the multi-level skip convolution layers. The architecture is of particular importance for the projector compensation task, for which only a small training dataset is allowed in practice. Another contribution we make is a novel evaluation benchmark, which is independent of system setup and thus quantitatively verifiable. Such benchmark is not previously available, to our best knowledge, due to the fact that conventional evaluation requests the hardware system to actually project the final results. Our key idea, motivated from our end-to-end problem formulation, is to use a reasonable surrogate to avoid such projection process so as to be setup-independent. Our method is evaluated carefully on the benchmark, and the results show that our end-to-end learning solution outperforms state-of-the-arts both qualitatively and quantitatively by a significant margin.
Abstract:Existing camera-projector calibration methods typically warp feature points from a camera image to a projector image using estimated homographies, and often suffer from errors in camera parameters and noise due to imperfect planarity of the calibration target. In this paper we propose a simple yet robust solution that explicitly deals with these challenges. Following the structured light (SL) camera-project calibration framework, a carefully designed correspondence algorithm is built on top of the De Bruijn patterns. Such correspondence is then used for initial camera-projector calibration. Then, to gain more robustness against noises, especially those from an imperfect planar calibration board, a bundle adjustment algorithm is developed to jointly optimize the estimated camera and projector models. Aside from the robustness, our solution requires only one shot of SL pattern for each calibration board pose, which is much more convenient than multi-shot solutions in practice. Data validations are conducted on both synthetic and real datasets, and our method shows clear advantages over existing methods in all experiments.