Abstract:Computer-assisted treatment has emerged as a viable application of medical imaging, owing to the efficacy of deep learning models. Real-time inference speed remains a key requirement for such applications to help medical personnel. Even though there generally exists a trade-off between performance and model size, impressive efforts have been made to retain near-original performance by compromising model size. Neural network pruning has emerged as an exciting area that aims to eliminate redundant parameters to make the inference faster. In this study, we show an application of neural network pruning in polyp segmentation. We compute the importance score of convolutional filters and remove the filters having the least scores, which to some value of pruning does not degrade the performance. For computing the importance score, we use the Taylor First Order (TaylorFO) approximation of the change in network output for the removal of certain filters. Specifically, we employ a gradient-normalized backpropagation for the computation of the importance score. Through experiments in the polyp datasets, we validate that our approach can significantly reduce the parameter count and FLOPs retaining similar performance.
Abstract:Neural networks are notorious for being overconfident predictors, posing a significant challenge to their safe deployment in real-world applications. While feature normalization has garnered considerable attention within the deep learning literature, current train-time regularization methods for Out-of-Distribution(OOD) detection are yet to fully exploit this potential. Indeed, the naive incorporation of feature normalization within neural networks does not guarantee substantial improvement in OOD detection performance. In this work, we introduce T2FNorm, a novel approach to transforming features to hyperspherical space during training, while employing non-transformed space for OOD-scoring purposes. This method yields a surprising enhancement in OOD detection capabilities without compromising model accuracy in in-distribution(ID). Our investigation demonstrates that the proposed technique substantially diminishes the norm of the features of all samples, more so in the case of out-of-distribution samples, thereby addressing the prevalent concern of overconfidence in neural networks. The proposed method also significantly improves various post-hoc OOD detection methods.