Abstract:Encoder-only transformer models such as BERT offer a great performance-size tradeoff for retrieval and classification tasks with respect to larger decoder-only models. Despite being the workhorse of numerous production pipelines, there have been limited Pareto improvements to BERT since its release. In this paper, we introduce ModernBERT, bringing modern model optimizations to encoder-only models and representing a major Pareto improvement over older encoders. Trained on 2 trillion tokens with a native 8192 sequence length, ModernBERT models exhibit state-of-the-art results on a large pool of evaluations encompassing diverse classification tasks and both single and multi-vector retrieval on different domains (including code). In addition to strong downstream performance, ModernBERT is also the most speed and memory efficient encoder and is designed for inference on common GPUs.
Abstract:This paper presents rerankers, a Python library which provides an easy-to-use interface to the most commonly used re-ranking approaches. Re-ranking is an integral component of many retrieval pipelines; however, there exist numerous approaches to it, relying on different implementation methods. rerankers unifies these methods into a single user-friendly interface, allowing practitioners and researchers alike to explore different methods while only changing a single line of Python code. Moreover ,rerankers ensures that its implementations are done with the fewest dependencies possible, and re-uses the original implementation whenever possible, guaranteeing that our simplified interface results in no performance degradation compared to more complex ones. The full source code and list of supported models are updated regularly and available at https://github.com/answerdotai/rerankers.
Abstract:Neural Information Retrieval has advanced rapidly in high-resource languages, but progress in lower-resource ones such as Japanese has been hindered by data scarcity, among other challenges. Consequently, multilingual models have dominated Japanese retrieval, despite their computational inefficiencies and inability to capture linguistic nuances. While recent multi-vector monolingual models like JaColBERT have narrowed this gap, they still lag behind multilingual methods in large-scale evaluations. This work addresses the suboptimal training methods of multi-vector retrievers in lower-resource settings, focusing on Japanese. We systematically evaluate and improve key aspects of the inference and training settings of JaColBERT, and more broadly, multi-vector models. We further enhance performance through a novel checkpoint merging step, showcasing it to be an effective way of combining the benefits of fine-tuning with the generalization capabilities of the original checkpoint. Building on our analysis, we introduce a novel training recipe, resulting in the JaColBERTv2.5 model. JaColBERTv2.5, with only 110 million parameters and trained in under 15 hours on 4 A100 GPUs, significantly outperforms all existing methods across all common benchmarks, reaching an average score of 0.754, significantly above the previous best of 0.720. To support future research, we make our final models, intermediate checkpoints and all data used publicly available.
Abstract:Document retrieval in many languages has been largely relying on multi-lingual models, and leveraging the vast wealth of English training data. In Japanese, the best performing deep-learning based retrieval approaches rely on multilingual dense embeddings. In this work, we introduce (1) a hard-negative augmented version of the Japanese MMARCO dataset and (2) JaColBERT, a document retrieval model built on the ColBERT model architecture, specifically for Japanese. JaColBERT vastly outperform all previous monolingual retrieval approaches and competes with the best multilingual methods, despite unfavourable evaluation settings (out-of-domain vs. in-domain for the multilingual models). JaColBERT reaches an average Recall@10 of 0.813, noticeably ahead of the previous monolingual best-performing model (0.716) and only slightly behind multilingual-e5-base (0.820), though more noticeably behind multilingual-e5-large (0.856). These results are achieved using only a limited, entirely Japanese, training set, more than two orders of magnitudes smaller than multilingual embedding models. We believe these results show great promise to support retrieval-enhanced application pipelines in a wide variety of domains.
Abstract:Understanding labour market dynamics requires accurately identifying the skills required for and possessed by the workforce. Automation techniques are increasingly being developed to support this effort. However, automatically extracting skills from job postings is challenging due to the vast number of existing skills. The ESCO (European Skills, Competences, Qualifications and Occupations) framework provides a useful reference, listing over 13,000 individual skills. However, skills extraction remains difficult and accurately matching job posts to the ESCO taxonomy is an open problem. In this work, we propose an end-to-end zero-shot system for skills extraction from job descriptions based on large language models (LLMs). We generate synthetic training data for the entirety of ESCO skills and train a classifier to extract skill mentions from job posts. We also employ a similarity retriever to generate skill candidates which are then re-ranked using a second LLM. Using synthetic data achieves an RP@10 score 10 points higher than previous distant supervision approaches. Adding GPT-4 re-ranking improves RP@10 by over 22 points over previous methods. We also show that Framing the task as mock programming when prompting the LLM can lead to better performance than natural language prompts, especially with weaker LLMs. We demonstrate the potential of integrating large language models at both ends of skills matching pipelines. Our approach requires no human annotations and achieve extremely promising results on skills extraction against ESCO.
Abstract:This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.
Abstract:We aim to highlight an interesting trend to contribute to the ongoing debate around advances within legal Natural Language Processing. Recently, the focus for most legal text classification tasks has shifted towards large pre-trained deep learning models such as BERT. In this paper, we show that a more traditional approach based on Support Vector Machine classifiers reaches competitive performance with deep learning models. We also highlight that error reduction obtained by using specialised BERT-based models over baselines is noticeably smaller in the legal domain when compared to general language tasks. We discuss some hypotheses for these results to support future discussions.
Abstract:Large Transformer-based language models such as BERT have led to broad performance improvements on many NLP tasks. Domain-specific variants of these models have demonstrated excellent performance on a variety of specialised tasks. In legal NLP, BERT-based models have led to new state-of-the-art results on multiple tasks. The exploration of these models has demonstrated the importance of capturing the specificity of the legal language and its vocabulary. However, such approaches suffer from high computational costs, leading to a higher ecological impact and lower accessibility. Our findings, focusing on English language legal text, show that lightweight LSTM-based Language Models are able to capture enough information from a small legal text pretraining corpus and achieve excellent performance on short legal text classification tasks. This is achieved with a significantly reduced computational overhead compared to BERT-based models. However, our method also shows degraded performance on a more complex task, multi-label classification of longer documents, highlighting the limitations of this lightweight approach.
Abstract:The use of large pretrained neural networks to create contextualized word embeddings has drastically improved performance on several natural language processing (NLP) tasks. These computationally expensive models have begun to be applied to domain-specific NLP tasks such as re-hospitalization prediction from clinical notes. This paper demonstrates that using large pretrained models produces excellent results on common learning analytics tasks. Pre-training deep language models using student forum data from a wide array of online courses improves performance beyond the state of the art on three text classification tasks. We also show that a smaller, distilled version of our model produces the best results on two of the three tasks while limiting computational cost. We make both models available to the research community at large.