Abstract:Explainable Artificial Intelligence (XAI) is a promising solution to improve the transparency of machine learning (ML) pipelines. We systematize the increasingly growing (but fragmented) microcosm of studies that develop and utilize XAI methods for defensive and offensive cybersecurity tasks. We identify 3 cybersecurity stakeholders, i.e., model users, designers, and adversaries, that utilize XAI for 5 different objectives within an ML pipeline, namely 1) XAI-enabled decision support, 2) applied XAI for security tasks, 3) model verification via XAI, 4) explanation verification & robustness, and 5) offensive use of explanations. We further classify the literature w.r.t. the targeted security domain. Our analysis of the literature indicates that many of the XAI applications are designed with little understanding of how they might be integrated into analyst workflows -- user studies for explanation evaluation are conducted in only 14% of the cases. The literature also rarely disentangles the role of the various stakeholders. Particularly, the role of the model designer is minimized within the security literature. To this end, we present an illustrative use case accentuating the role of model designers. We demonstrate cases where XAI can help in model verification and cases where it may lead to erroneous conclusions instead. The systematization and use case enable us to challenge several assumptions and present open problems that can help shape the future of XAI within cybersecurity
Abstract:Sequence clustering in a streaming environment is challenging because it is computationally expensive, and the sequences may evolve over time. K-medoids or Partitioning Around Medoids (PAM) is commonly used to cluster sequences since it supports alignment-based distances, and the k-centers being actual data items helps with cluster interpretability. However, offline k-medoids has no support for concept drift, while also being prohibitively expensive for clustering data streams. We therefore propose SECLEDS, a streaming variant of the k-medoids algorithm with constant memory footprint. SECLEDS has two unique properties: i) it uses multiple medoids per cluster, producing stable high-quality clusters, and ii) it handles concept drift using an intuitive Medoid Voting scheme for approximating cluster distances. Unlike existing adaptive algorithms that create new clusters for new concepts, SECLEDS follows a fundamentally different approach, where the clusters themselves evolve with an evolving stream. Using real and synthetic datasets, we empirically demonstrate that SECLEDS produces high-quality clusters regardless of drift, stream size, data dimensionality, and number of clusters. We compare against three popular stream and batch clustering algorithms. The state-of-the-art BanditPAM is used as an offline benchmark. SECLEDS achieves comparable F1 score to BanditPAM while reducing the number of required distance computations by 83.7%. Importantly, SECLEDS outperforms all baselines by 138.7% when the stream contains drift. We also cluster real network traffic, and provide evidence that SECLEDS can support network bandwidths of up to 1.08 Gbps while using the (expensive) dynamic time warping distance.
Abstract:We present a method to learn automaton models that are more robust to input modifications. It iteratively aligns sequences to a learned model, modifies the sequences to their aligned versions, and re-learns the model. Automaton learning algorithms are typically very good at modeling the frequent behavior of a software system. Our solution can be used to also learn the behavior present in infrequent sequences, as these will be aligned to the frequent ones represented by the model. We apply our method to the SAGE tool for modeling attacker behavior from intrusion alerts. In experiments, we demonstrate that our algorithm learns models that can handle noise such as added and removed symbols from sequences. Furthermore, it learns more concise models that fit better to the training data.
Abstract:Attack graphs (AG) are used to assess pathways availed by cyber adversaries to penetrate a network. State-of-the-art approaches for AG generation focus mostly on deriving dependencies between system vulnerabilities based on network scans and expert knowledge. In real-world operations however, it is costly and ineffective to rely on constant vulnerability scanning and expert-crafted AGs. We propose to automatically learn AGs based on actions observed through intrusion alerts, without prior expert knowledge. Specifically, we develop an unsupervised sequence learning system, SAGE, that leverages the temporal and probabilistic dependence between alerts in a suffix-based probabilistic deterministic finite automaton (S-PDFA) -- a model that accentuates infrequent severe alerts and summarizes paths leading to them. AGs are then derived from the S-PDFA. Tested with intrusion alerts collected through Collegiate Penetration Testing Competition, SAGE produces AGs that reflect the strategies used by participating teams. The resulting AGs are succinct, interpretable, and enable analysts to derive actionable insights, e.g., attackers tend to follow shorter paths after they have discovered a longer one.