Abstract:This paper explores the integration of incremental curriculum learning (ICL) with deep reinforcement learning (DRL) techniques to facilitate mobile robot navigation through task-based human instruction. By adopting a curriculum that mirrors the progressive complexity encountered in human learning, our approach systematically enhances robots' ability to interpret and execute complex instructions over time. We explore the principles of DRL and its synergy with ICL, demonstrating how this combination not only improves training efficiency but also equips mobile robots with the generalization capability required for navigating through dynamic indoor environments. Empirical results indicate that robots trained with our ICL-enhanced DRL framework outperform those trained without curriculum learning, highlighting the benefits of structured learning progressions in robotic training.
Abstract:This paper introduces YamaS, a simulator integrating Unity3D Engine with Robotic Operating System for robot navigation research and aims to facilitate the development of both Deep Reinforcement Learning (Deep-RL) and Natural Language Processing (NLP). It supports single and multi-agent configurations with features like procedural environment generation, RGB vision, and dynamic obstacle navigation. Unique to YamaS is its ability to construct single and multi-agent environments, as well as generating agent's behaviour through textual descriptions. The simulator's fidelity is underscored by comparisons with the real-world Yamabiko Beego robot, demonstrating high accuracy in sensor simulations and spatial reasoning. Moreover, YamaS integrates Virtual Reality (VR) to augment Human-Robot Interaction (HRI) studies, providing an immersive platform for developers and researchers. This fusion establishes YamaS as a versatile and valuable tool for the development and testing of autonomous systems, contributing to the fields of robot simulation and AI-driven training methodologies.