Abstract:In this paper, we investigate a non-lineof-sight (NLOS) sensing problem at terahertz frequencies. To be able to observe the targets shadowed by a blockage, we propose a method using reconfigurable intelligent surfaces (RIS). We employ a bistatic radar system and scan the obstructed area with RIS using hierarchical codebooks (HCB). Moreover, we propose an iterative maximum likelihood estimation (MLE) scheme to yield the optimum sensing accuracy, converging to Cramer-Rao lower bound (CRLB). We take band-specific effects such as diffraction and beam squint into account and show that these effects are relevant factors affecting localization performance in RIS-employed radar setups. The results show that under NLOS conditions, the system can still localize all the targets with very good accuracy using the RIS. The initial estimates obtained by the HCBs can provide centimeter-level accuracy, and when the optimal performance is needed, at the cost of a few extra transmissions, the proposed iterative MLE method improves the accuracy to sub-millimeter accuracy, yielding the position error bound.
Abstract:In this paper, we address the problem of direction of arrival (DOA) estimation for multiple targets in the presence of sensor failures in a sparse array. Generally, sparse arrays are known with very high-resolution capabilities, where N physical sensors can resolve up to $\mathcal{O}(N^2)$ uncorrelated sources. However, among the many configurations introduced in the literature, the arrays that provide the largest hole-free co-array are the most susceptible to sensor failures. We propose here two machine learning (ML) methods to mitigate the effect of sensor failures and maintain the DOA estimation performance and resolution. The first method enhances the conventional spatial smoothing using deep neural network (DNN), while the second one is an end-to-end data-driven method. Numerical results show that both approaches can significantly improve the performance of MRA with two failed sensors. The data-driven method can maintain the performance of the array with no failures at high signal-tonoise ratio (SNR). Moreover, both approaches can even perform better than the original array at low SNR thanks to the denoising effect of the proposed DNN
Abstract:We present a MUSIC-based Direction of Arrival (DOA) estimation strategy using small antenna arrays, via employing deep learning for reconstructing the signals of a virtual large antenna array. Not only does the proposed strategy deliver significantly better performance than simply plugging the incoming signals into MUSIC, but surprisingly, the performance is also better than directly using an actual large antenna array with MUSIC for high angle ranges and low test SNR values. We further analyze the best choice for the training SNR as a function of the test SNR, and observe dramatic changes in the behavior of this function for different angle ranges.
Abstract:This paper considers the problem of multi-target detection for massive multiple input multiple output (MMIMO) cognitive radar (CR). The concept of CR is based on the perception-action cycle that senses and intelligently adapts to the dynamic environment in order to optimally satisfy a specific mission. However, this usually requires a priori knowledge of the environmental model, which is not available in most cases. We propose a reinforcement learning (RL) based algorithm for cognitive beamforming in the presence of unknown disturbance statistics. The radar acts as an agent which continuously senses the unknown environment (i.e., targets and disturbance). Consequently, it optimizes the beamformers through tailoring the beampattern based on the acquired information. Furthermore, we propose a solution to the beamforming optimization problem with less complexity than the existing methods. Numerical simulations are performed to assess the performance of the proposed RL-based algorithm in both stationary and dynamic environments. The RL based beamforming is compared to the conventional omnidirectional approach with equal power allocation. As highlighted by the proposed numerical results, our RL-based beamformer greatly outperforms the omnidirectional one in terms of target detection performance. The performance improvement is even more remarkable under environmentally harsh conditions such as low SNR, heavy-tailed disturbance and rapidly changing scenarios.