Abstract:Prevalent in many real-world settings such as healthcare, irregular time series are challenging to formulate predictions from. It is difficult to infer the value of a feature at any given time when observations are sporadic, as it could take on a range of values depending on when it was last observed. To characterize this uncertainty we present EDICT, a strategy that learns an evidential distribution over irregular time series in continuous time. This distribution enables well-calibrated and flexible inference of partially observed features at any time of interest, while expanding uncertainty temporally for sparse, irregular observations. We demonstrate that EDICT attains competitive performance on challenging time series classification tasks and enabling uncertainty-guided inference when encountering noisy data.
Abstract:The ability to computationally generate novel yet physically foldable protein structures could lead to new biological discoveries and new treatments targeting yet incurable diseases. Despite recent advances in protein structure prediction, directly generating diverse, novel protein structures from neural networks remains difficult. In this work, we present a new diffusion-based generative model that designs protein backbone structures via a procedure that mirrors the native folding process. We describe protein backbone structure as a series of consecutive angles capturing the relative orientation of the constituent amino acid residues, and generate new structures by denoising from a random, unfolded state towards a stable folded structure. Not only does this mirror how proteins biologically twist into energetically favorable conformations, the inherent shift and rotational invariance of this representation crucially alleviates the need for complex equivariant networks. We train a denoising diffusion probabilistic model with a simple transformer backbone and demonstrate that our resulting model unconditionally generates highly realistic protein structures with complexity and structural patterns akin to those of naturally-occurring proteins. As a useful resource, we release the first open-source codebase and trained models for protein structure diffusion.