Abstract:Fairness is a critical concern in deep learning, especially in healthcare, where these models influence diagnoses and treatment decisions. Although fairness has been investigated in the vision-only domain, the fairness of medical vision-language (VL) models remains unexplored due to the scarcity of medical VL datasets for studying fairness. To bridge this research gap, we introduce the first fair vision-language medical dataset Harvard-FairVLMed that provides detailed demographic attributes, ground-truth labels, and clinical notes to facilitate an in-depth examination of fairness within VL foundation models. Using Harvard-FairVLMed, we conduct a comprehensive fairness analysis of two widely-used VL models (CLIP and BLIP2), pre-trained on both natural and medical domains, across four different protected attributes. Our results highlight significant biases in all VL models, with Asian, Male, Non-Hispanic, and Spanish being the preferred subgroups across the protected attributes of race, gender, ethnicity, and language, respectively. In order to alleviate these biases, we propose FairCLIP, an optimal-transport-based approach that achieves a favorable trade-off between performance and fairness by reducing the Sinkhorn distance between the overall sample distribution and the distributions corresponding to each demographic group. As the first VL dataset of its kind, Harvard-FairVLMed holds the potential to catalyze advancements in the development of machine learning models that are both ethically aware and clinically effective. Our dataset and code are available at https://ophai.hms.harvard.edu/datasets/harvard-fairvlmed10k.
Abstract:Fairness in artificial intelligence models has gained significantly more attention in recent years, especially in the area of medicine, as fairness in medical models is critical to people's well-being and lives. High-quality medical fairness datasets are needed to promote fairness learning research. Existing medical fairness datasets are all for classification tasks, and no fairness datasets are available for medical segmentation, while medical segmentation is an equally important clinical task as classifications, which can provide detailed spatial information on organ abnormalities ready to be assessed by clinicians. In this paper, we propose the first fairness dataset for medical segmentation named FairSeg with 10,000 subject samples. In addition, we propose a fair error-bound scaling approach to reweight the loss function with the upper error-bound in each identity group. We anticipate that the segmentation performance equity can be improved by explicitly tackling the hard cases with high training errors in each identity group. To facilitate fair comparisons, we propose new equity-scaled segmentation performance metrics, such as the equity-scaled Dice coefficient, which is calculated as the overall Dice coefficient divided by one plus the standard deviation of group Dice coefficients. Through comprehensive experiments, we demonstrate that our fair error-bound scaling approach either has superior or comparable fairness performance to the state-of-the-art fairness learning models. The dataset and code are publicly accessible via \url{https://github.com/Harvard-Ophthalmology-AI-Lab/FairSeg}.