Abstract:In robotic manipulation, tactile sensors are indispensable, especially when dealing with soft objects, objects of varying dimensions, or those out of the robot's direct line of sight. Traditional tactile sensors often grapple with challenges related to cost and durability. To address these issues, our study introduces a novel approach to visuo-tactile sensing with an emphasis on economy and replacablity. Our proposed sensor, BeadSight, uses hydro-gel beads encased in a vinyl bag as an economical, easily replaceable sensing medium. When the sensor makes contact with a surface, the deformation of the hydrogel beads is observed using a rear camera. This observation is then passed through a U-net Neural Network to predict the forces acting on the surface of the bead bag, in the form of a pressure map. Our results show that the sensor can accurately predict these pressure maps, detecting the location and magnitude of forces applied to the surface. These abilities make BeadSight an effective, inexpensive, and easily replaceable tactile sensor, ideal for many robotics applications.
Abstract:With the goal of developing fully autonomous cooking robots, developing robust systems that can chop a wide variety of objects is important. Existing approaches focus primarily on the low-level dynamics of the cutting action, which overlooks some of the practical real-world challenges of implementing autonomous cutting systems. In this work we propose an autonomous framework to sequence together action primitives for the purpose of chopping fruits and vegetables on a cluttered cutting board. We present a novel technique to leverage vision foundational models SAM and YOLO to accurately detect, segment, and track fruits and vegetables as they visually change through the sequences of chops, finetuning YOLO on a novel dataset of whole and chopped fruits and vegetables. In our experiments, we demonstrate that our simple pipeline is able to reliably chop a variety of fruits and vegetables ranging in size, appearance, and texture, meeting a variety of chopping specifications, including fruit type, number of slices, and types of slices.