Abstract:In this demo, we present AERA Chat, an automated and explainable educational assessment system designed for interactive and visual evaluations of student responses. This system leverages large language models (LLMs) to generate automated marking and rationale explanations, addressing the challenge of limited explainability in automated educational assessment and the high costs associated with annotation. Our system allows users to input questions and student answers, providing educators and researchers with insights into assessment accuracy and the quality of LLM-assessed rationales. Additionally, it offers advanced visualization and robust evaluation tools, enhancing the usability for educational assessment and facilitating efficient rationale verification. Our demo video can be found at https://youtu.be/qUSjz-sxlBc.
Abstract:Generating rationales that justify scoring decisions has emerged as a promising approach to enhance explainability in the development of automated scoring systems. However, the scarcity of publicly available rationale data and the high cost of annotation have resulted in existing methods typically relying on noisy rationales generated by large language models (LLMs). To address these challenges, we have developed AERA Chat, an interactive platform, to provide visually explained assessment of student answers and streamline the verification of rationales. Users can input questions and student answers to obtain automated, explainable assessment results from LLMs. The platform's innovative visualization features and robust evaluation tools make it useful for educators to assist their marking process, and for researchers to evaluate assessment performance and quality of rationales generated by different LLMs, or as a tool for efficient annotation. We evaluated three rationale generation approaches on our platform to demonstrate its capability.
Abstract:Drug safety research is crucial for maintaining public health, often requiring comprehensive data support. However, the resources currently available to the public are limited and fail to provide a comprehensive understanding of the relationship between drugs and their side effects. This paper introduces DrugWatch, an easy-to-use and interactive multi-source information visualisation platform for drug safety study. It allows users to understand common side effects of drugs and their statistical information, flexibly retrieve relevant medical reports, or annotate their own medical texts with our automated annotation tool. Supported by NLP technology and enriched with interactive visual components, we are committed to providing researchers and practitioners with a one-stop information analysis, retrieval, and annotation service. The demonstration video is available at https://www.youtube.com/watch?v=RTqDgxzETjw. We also deployed an online demonstration system at https://drugwatch.net/.