Jack
Abstract:The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.
Abstract:Background: We are witnessing an increasing adoption of machine learning (ML), especially deep learning (DL) algorithms in many software systems, including safety-critical systems such as health care systems or autonomous driving vehicles. Ensuring the software quality of these systems is yet an open challenge for the research community, mainly due to the inductive nature of ML software systems. Traditionally, software systems were constructed deductively, by writing down the rules that govern the behavior of the system as program code. However, for ML software, these rules are inferred from training data. Few recent research advances in the quality assurance of ML systems have adapted different concepts from traditional software testing, such as mutation testing, to help improve the reliability of ML software systems. However, it is unclear if any of these proposed testing techniques from research are adopted in practice. There is little empirical evidence about the testing strategies of ML engineers. Aims: To fill this gap, we perform the first fine-grained empirical study on ML testing practices in the wild, to identify the ML properties being tested, the followed testing strategies, and their implementation throughout the ML workflow. Method: First, we systematically summarized the different testing strategies (e.g., Oracle Approximation), the tested ML properties (e.g., Correctness, Bias, and Fairness), and the testing methods (e.g., Unit test) from the literature. Then, we conducted a study to understand the practices of testing ML software. Results: In our findings: 1) we identified four (4) major categories of testing strategy including Grey-box, White-box, Black-box, and Heuristic-based techniques that are used by the ML engineers to find software bugs. 2) We identified 16 ML properties that are tested in the ML workflow.