Abstract:Orthogonal time frequency space modulation (OTFS) is currently one of the most robust modulation techniques for high Doppler channels. However, to reap the benefits of OTFS, an accurate channel estimation is crucial. To this mean, the widely used embedded pilot structures use twice the channel length size as a delay guard to avoid interference between the pilot and data symbols. Hence, incurring a large spectral efficiency loss, especially in wideband systems where the channel length is large. To reduce the pilot overhead, we propose a novel split pilot structure with two impulse pilots. With two pilots, we can use one to cancel the other, thus, capable of removing the pilot interference over data. To remove the data interference from the pilot, we also propose an iterative joint channel estimation and detection technique tailored to the proposed split pilot structure. With the interference caused by the delay spread solved, we reduce the number of delay guards in our system by half, significantly improving the spectral efficiency. To corroborate our claims, we numerically demonstrate that our proposed method can achieve performance levels comparable to that of the full-guard method while using only half the delay guard. Additionally, we show that our proposed iterative channel estimating technique has a fast convergence speed, requiring only two iterations.
Abstract:In this paper, we propose time and frequency synchronization techniques for the uplink of multiuser OTFS (MU-OTFS) in high-mobility scenarios. We introduce a spectrally efficient and practical pilot pattern where each user utilizes a pilot with a cyclic prefix (PCP) within a shared pilot region on the delay-Doppler plane. At the receiver, a bank of filters is deployed to separate the users' signals and accurately estimate their timing offsets (TOs) and carrier frequency offsets (CFOs). Our technique employs a threshold-based approach that provides precise TO estimates. Our proposed CFO estimation technique reduces the multi-dimensional maximum likelihood (ML) search problem into multiple one-dimensional search problems. Furthermore, we apply the Chebyshev polynomials of the first kind basis expansion model (CPF-BEM) to effectively handle the time-variations of the channel in obtaining the CFO estimates for all the users. Finally, we numerically investigate the error performance of our proposed synchronization technique in high mobility scenarios for the MU-OTFS uplink. Our simulation results confirm the efficacy of the proposed technique in estimating the TOs and CFOs which also leads to an improved channel estimation performance.
Abstract:In this paper, we propose a network architecture where two types of aerial infrastructures together with a ground station provide connectivity to a remote area. A high altitude platform station (HAPS) is equipped with reconfigurable intelligent surface (RIS), so-called HAPS-RIS, to be exploited to assist the unmanned aerial vehicle (UAV)-based wireless networks. A key challenge in such networks is the restricted number of UAVs, which limits full coverage and leaves some users unsupported. To tackle this issue, we propose a hierarchical bilevel optimization framework including a leader and a follower problem. The users served by HAPS-RIS are in a zone called HAPS-RIS zone and the users served by the UAVs are in another zone called UAV zone. In the leader problem, the goal is to establish the zone boundary that maximizes the number of users covered by HAPS-RIS while ensuring that users in this zone meet their rate requirements. This is achieved through an algorithm that integrates RIS clustering, subcarrier allocation, and zone determination. The follower problem focuses on minimizing the number of UAVs required, ensuring that the rate requirements of the users in the UAV zone are met. This is addressed using an algorithm that employs k-means clustering and subcarrier allocation. Our study reveals that increasing the number of RIS elements significantly decreases the number of required UAVs.
Abstract:In this paper, we explore the integration of two revolutionary technologies, reconfigurable intelligent surfaces (RISs) and orthogonal time frequency space (OTFS) modulation, to enhance high-speed wireless communications. We introduce a novel phase shift design algorithm for RIS-assisted OTFS, optimizing energy reception and channel gain in dynamic environments. The study evaluates the proposed approach in a downlink scenario, demonstrating significant performance improvements compared to benchmark schemes in the literature, particularly in terms of bit error rate (BER). Our results showcase the potential of RIS to enhance the system's performance. Specifically, our proposed phase shift design technique outperforms the benchmark solutions by over 4 dB. Furthermore, even greater gains can be obtained as the number of RIS elements increases.
Abstract:This paper compares orthogonal time frequency space (OTFS) modulation and single-carrier frequency division multiple access (SC-FDMA). It shows that these are equivalent except for a set of linear phase shifts, applied to the transmit/receive data symbols, which can be absorbed into the channel. Through mathematical and numerical analysis, it is confirmed that SC-FDMA is in fact a delay-Doppler domain multiplexing technique that can achieve the same performance gains as those of OTFS in time-varying wireless environments. This is a promising result as SC-FDMA is already a part of the current wireless standards. The derivations in this paper also shed light on the time-frequency resources used by the delay-Doppler domain data symbols with the fine granularity of delay and Doppler spacings. While comparing the detection performance of the two waveforms, a timing offset (TO) estimation technique with orders of magnitude higher accuracy than the existing solutions in the literature is proposed. From multiple access viewpoint, the underlying tile structures in the time-frequency domain for OTFS and SC-FDMA are discussed. Finally, multiuser input-output relationships for both waveforms in the uplink are derived.
Abstract:Delay-Doppler multiplexing has recently stirred a great deal of attention in research community. While multiple studies have investigated pulse-shaping aspects of this technology, it is challenging to identify the relationships between different pulse-shaping techniques and their properties. Hence, in this paper, we classify these techniques into two types, namely, circular and linear pulse-shaping. This paves the way towards the development of a unified framework that brings deep insights into the properties, similarities, and distinctions of different pulse-shaping techniques. This framework reveals that the recently emerged waveform orthogonal delay-Doppler multiplexing (ODDM) is a linear pulse-shaping technique with an interesting staircase spectral behaviour. Using this framework, we derive a generalized input-output relationship that captures the influence of pulse-shaping on the effective channel. We also introduce a unified modem for delay-Doppler plane pulse-shaping that leads to the proposal of fast convolution based low-complexity structures. Based on our complexity analysis, the proposed modem structures are substantially simpler than the existing ones in the literature. Furthermore, we propose effective techniques that not only reduce the out-of-band (OOB) emissions of circularly pulse-shaped signals but also improve the bit-error-rate (BER) performance of both circular and linear pulse-shaping techniques. Finally, we extensively compare different pulse-shaping techniques using various performance metrics.
Abstract:This paper introduces a practical precoding method for the downlink of Filter Bank Multicarrier-based (FBMC-based) massive multiple-input multiple-output (MIMO) systems. The proposed method comprises a two-stage precoder, consisting of a fractionally spaced prefilter (FSP) per subcarrier to equalize the channel across each subcarrier band. This is followed by a conventional precoder that concentrates the signals of different users at their spatial locations, ensuring each user receives only the intended information. In practical scenarios, a perfect channel reciprocity may not hold due to radio chain mismatches in the uplink and downlink. Moreover, the channel state information (CSI) may not be perfectly known at the base station. To address these issues, we theoretically analyze the performance of the proposed precoder in presence of imperfect CSI and channel reciprocity calibration errors. Our investigation covers both co-located (cell-based) and cell-free massive MIMO cases. In the cell-free massive MIMO setup, we propose an access point selection method based on the received SINRs of different users in the uplink. Finally, we conduct numerical evaluations to assess the performance of the proposed precoder. Our results demonstrate the excellent performance of the proposed precoder when compared with the orthogonal frequency division multiplexing (OFDM) method as a benchmark.
Abstract:The primary objective of this paper is to establish a generalized framework for pulse-shaping on the delay-Doppler plane. To this end, we classify delay-Doppler pulse-shaping techniques into two types, namely, circular and linear pulse-shaping. This paves the way towards the development of a generalized pulse-shaping framework. Our generalized framework provides the opportunity to compare different pulse-shaping techniques under the same umbrella while bringing new insights into their properties. In particular, our derivations based on this framework reveal that the recently emerged waveform orthogonal delay-Doppler multiplexing modulation (ODDM) is a linear pulse-shaping technique. By presenting ODDM under our generalized framework, we clearly explain the observed staircase behavior of its spectrum which has not been previously reported in the literature. Another contribution of this paper is proposal of a simple out-of-band (OOB) emission reduction technique by inserting a small number of zero-guard (ZG) symbols along the delay dimension of the circularly pulse-shaped signals. Additionally, inserting the zero-guards improves the bit-error-rate (BER) performance of both circular and linear pulse-shaping techniques. Finally, our simulation results confirm the validity of our mathematical derivations, claims and the effectiveness of the ZGs in OOB reduction and BER performance improvement.
Abstract:Orthogonal time frequency space (OTFS) is a promising candidate waveform for the next generation wireless communication systems. OTFS places data in the delay-Doppler (DD) domain, which simplifies channel estimation in highmobility scenarios. However, due to the 2-D convolution effect of the time-varying channel in the DD domain, equalization is still a challenge for OTFS. Existing equalizers for OTFS are either highly complex or they do not consider intercarrier interference present in high-mobility scenarios. Hence, in this paper, we propose a novel two-stage detection technique for coded OTFS systems. Our proposed detector brings orders of magnitude computational complexity reduction compared to existing methods. At the first stage, it truncates the channel by considering only the significant coefficients along the Doppler dimension and performs turbo equalization. To reduce the computational load of the turbo equalizer, our proposed method deploys the modified LSQR (mLSQR) algorithm. At the second stage, with only two successive interference cancellation (SIC) iterations, our proposed detector removes the residual interference caused by channel truncation. To evaluate the performance of our proposed truncated turbo equalizer with SIC (TTE-SIC), we set the minimum mean squared error (MMSE) equalizer without channel truncation as a benchmark. Our simulation results show that the proposed TTE-SIC technique achieves about the same bit error rate (BER) performance as the benchmark.
Abstract:Orthogonal time frequency space (OTFS) modulation has recently emerged as a potential 6G candidate waveform which provides improved performance in high-mobility scenarios. In this paper we investigate the combination of OTFS with non-orthogonal multiple access (NOMA). Existing equalization and detection methods for OTFS-NOMA, such as minimum-mean-squared error with successive interference cancellation (MMSE-SIC), suffer from poor performance. Additionally, existing iterative methods for single-user OTFS based on low-complexity iterative least-squares solvers are not directly applicable to the NOMA scenario due to the presence of multi-user interference (MUI). Motivated by this, in this paper we propose a low-complexity method for equalization and detection for OTFS-NOMA. The proposed method uses a novel reliability zone (RZ) detection scheme which estimates the reliable symbols of the users and then uses interference cancellation to remove MUI. The thresholds for the RZ detector are optimized in a greedy manner to further improve detection performance. In order to optimize these thresholds, we modify the least squares with QR-factorization (LSQR) algorithm used for channel equalization to compute the the post-equalization mean-squared error (MSE), and track the evolution of this MSE throughout the iterative detection process. Numerical results demonstrate the superiority of the proposed equalization and detection technique to the existing MMSE-SIC benchmark in terms of symbol error rate (SER).