Abstract:Deep neural language models such as BERT have enabled substantial recent advances in many natural language processing tasks. Due to the effort and computational cost involved in their pre-training, language-specific models are typically introduced only for a small number of high-resource languages such as English. While multilingual models covering large numbers of languages are available, recent work suggests monolingual training can produce better models, and our understanding of the tradeoffs between mono- and multilingual training is incomplete. In this paper, we introduce a simple, fully automated pipeline for creating language-specific BERT models from Wikipedia data and introduce 42 new such models, most for languages up to now lacking dedicated deep neural language models. We assess the merits of these models using the state-of-the-art UDify parser on Universal Dependencies data, contrasting performance with results using the multilingual BERT model. We find that UDify using WikiBERT models outperforms the parser using mBERT on average, with the language-specific models showing substantially improved performance for some languages, yet limited improvement or a decrease in performance for others. We also present preliminary results as first steps toward an understanding of the conditions under which language-specific models are most beneficial. All of the methods and models introduced in this work are available under open licenses from https://github.com/turkunlp/wikibert.
Abstract:Deep learning-based language models pretrained on large unannotated text corpora have been demonstrated to allow efficient transfer learning for natural language processing, with recent approaches such as the transformer-based BERT model advancing the state of the art across a variety of tasks. While most work on these models has focused on high-resource languages, in particular English, a number of recent efforts have introduced multilingual models that can be fine-tuned to address tasks in a large number of different languages. However, we still lack a thorough understanding of the capabilities of these models, in particular for lower-resourced languages. In this paper, we focus on Finnish and thoroughly evaluate the multilingual BERT model on a range of tasks, comparing it with a new Finnish BERT model trained from scratch. The new language-specific model is shown to systematically and clearly outperform the multilingual. While the multilingual model largely fails to reach the performance of previously proposed methods, the custom Finnish BERT model establishes new state-of-the-art results on all corpora for all reference tasks: part-of-speech tagging, named entity recognition, and dependency parsing. We release the model and all related resources created for this study with open licenses at https://turkunlp.org/finbert .