Abstract:Linear Temporal Logic over finite traces ($\text{LTL}_f$) is a widely used formalism with applications in AI, process mining, model checking, and more. The primary reasoning task for $\text{LTL}_f$ is satisfiability checking; yet, the recent focus on explainable AI has increased interest in analyzing inconsistent formulas, making the enumeration of minimal explanations for infeasibility a relevant task also for $\text{LTL}_f$. This paper introduces a novel technique for enumerating minimal unsatisfiable cores (MUCs) of an $\text{LTL}_f$ specification. The main idea is to encode a $\text{LTL}_f$ formula into an Answer Set Programming (ASP) specification, such that the minimal unsatisfiable subsets (MUSes) of the ASP program directly correspond to the MUCs of the original $\text{LTL}_f$ specification. Leveraging recent advancements in ASP solving yields a MUC enumerator achieving good performance in experiments conducted on established benchmarks from the literature.
Abstract:Cloud-edge computing requires applications to operate across diverse infrastructures, often triggered by cyber-physical events. Containers offer a lightweight deployment option but pulling images from central repositories can cause delays. This article presents a novel declarative approach and open-source prototype for replicating container images across the cloud-edge continuum. Considering resource availability, network QoS, and storage costs, we leverage logic programming to (i) determine optimal initial placements via Answer Set Programming (ASP) and (ii) adapt placements using Prolog-based continuous reasoning. We evaluate our solution through simulations, showcasing how combining ASP and Prolog continuous reasoning can balance cost optimisation and prompt decision-making in placement adaptation at increasing infrastructure sizes.