Abstract:Answer Set Programming (ASP), a well-known declarative logic programming paradigm, has recently found practical application in Process Mining. In particular, ASP has been used to model tasks involving declarative specifications of business processes. In this area, Declare stands out as the most widely adopted declarative process modeling language, offering a means to model processes through sets of constraints valid traces must satisfy, that can be expressed in Linear Temporal Logic over Finite Traces (LTLf). Existing ASP-based solutions encode Declare constraints by modeling the corresponding LTLf formula or its equivalent automaton which can be obtained using established techniques. In this paper, we introduce a novel encoding for Declare constraints that directly models their semantics as ASP rules, eliminating the need for intermediate representations. We assess the effectiveness of this novel approach on two Process Mining tasks by comparing it with alternative ASP encodings and a Python library for Declare. Under consideration in Theory and Practice of Logic Programming (TPLP).
Abstract:We put forward Answer Set Programming (ASP) as a solution approach for three classical problems in Declarative Process Mining: Log Generation, Query Checking, and Conformance Checking. These problems correspond to different ways of analyzing business processes under execution, starting from sequences of recorded events, a.k.a. event logs. We tackle them in their data-aware variant, i.e., by considering events that carry a payload (set of attribute-value pairs), in addition to the performed activity, specifying processes declaratively with an extension of linear-time temporal logic over finite traces (LTLf). The data-aware setting is significantly more challenging than the control-flow one: Query Checking is still open, while the existing approaches for the other two problems do not scale well. The contributions of the work include an ASP encoding schema for the three problems, their solution, and experiments showing the feasibility of the approach.