Abstract:Mass spectrometry (MS) is essential for proteomics and metabolomics but faces impending challenges in efficiently processing the vast volumes of data. This paper introduces SpecPCM, an in-memory computing (IMC) accelerator designed to achieve substantial improvements in energy and delay efficiency for both MS spectral clustering and database (DB) search. SpecPCM employs analog processing with low-voltage swing and utilizes recently introduced phase change memory (PCM) devices based on superlattice materials, optimized for low-voltage and low-power programming. Our approach integrates contributions across multiple levels: application, algorithm, circuit, device, and instruction sets. We leverage a robust hyperdimensional computing (HD) algorithm with a novel dimension-packing method and develop specialized hardware for the end-to-end MS pipeline to overcome the non-ideal behavior of PCM devices. We further optimize multi-level PCM devices for different tasks by using different materials. We also perform a comprehensive design exploration to improve energy and delay efficiency while maintaining accuracy, exploring various combinations of hardware and software parameters controlled by the instruction set architecture (ISA). SpecPCM, with up to three bits per cell, achieves speedups of up to 82x and 143x for MS clustering and DB search tasks, respectively, along with a four-orders-of-magnitude improvement in energy efficiency compared with state-of-the-art CPU/GPU tools.
Abstract:Pollution and climate change are some of the biggest challenges that humanity is facing. In such a context, efficient recycling is a crucial tool for a sustainable future. This work is aimed at creating a system that can classify different types of plastics by using picture analysis, in particular, black plastics of the type Polystyrene (PS) and Acrylonitrile Butadiene Styrene (ABS). They are two common plastics from Waste from Electrical and Electronic Equipment (WEEE). For this purpose, a Convolutional Neural Network has been tested and retrained, obtaining a validation accuracy of 95%. Using a separate test set, average accuracy goes down to 86.6%, but a further look at the results shows that the ABS type is correctly classified 100% of the time, so it is the PS type that accumulates all the errors. Overall, this demonstrates the feasibility of classifying black plastics using CNN machine learning techniques. It is believed that if a more diverse and extensive image dataset becomes available, a system with higher reliability that generalizes well could be developed using the proposed methodology.