Abstract:As the capabilities of Large Language Models (LLMs) in healthcare and medicine continue to advance, there is a growing need for competitive open-source models that can safeguard public interest. With the increasing availability of highly competitive open base models, the impact of continued pre-training is increasingly uncertain. In this work, we explore the role of instruct tuning, model merging, alignment, red teaming and advanced inference schemes, as means to improve current open models. To that end, we introduce the Aloe family, a set of open medical LLMs highly competitive within its scale range. Aloe models are trained on the current best base models (Mistral, LLaMA 3), using a new custom dataset which combines public data sources improved with synthetic Chain of Thought (CoT). Aloe models undergo an alignment phase, becoming one of the first few policy-aligned open healthcare LLM using Direct Preference Optimization, setting a new standard for ethical performance in healthcare LLMs. Model evaluation expands to include various bias and toxicity datasets, a dedicated red teaming effort, and a much-needed risk assessment for healthcare LLMs. Finally, to explore the limits of current LLMs in inference, we study several advanced prompt engineering strategies to boost performance across benchmarks, yielding state-of-the-art results for open healthcare 7B LLMs, unprecedented at this scale.
Abstract:AI explainability seeks to increase the transparency of models, making them more trustworthy in the process. The need for transparency has been recently motivated by the emergence of deep learning models, which are particularly obscure by nature. Even in the domain of images, where deep learning has succeeded the most, explainability is still poorly assessed. Multiple feature attribution methods have been proposed in the literature with the purpose of explaining a DL model's behavior using visual queues, but no standardized metrics to assess or select these methods exist. In this paper we propose a novel evaluation metric -- the Focus -- designed to quantify the faithfulness of explanations provided by feature attribution methods, such as LRP or GradCAM. First, we show the robustness of the metric through randomization experiments, and then use Focus to evaluate and compare three popular explainability techniques using multiple architectures and datasets. Our results find LRP and GradCAM to be consistent and reliable, the former being more accurate for high performing models, while the latter remains most competitive even when applied to poorly performing models. Finally, we identify a strong relation between Focus and factors like model architecture and task, unveiling a new unsupervised approach for the assessment of models.
Abstract:Art is an expression of human creativity, skill and technology. An exceptionally rich source of visual content. In the context of AI image processing systems, artworks represent one of the most challenging domains conceivable: Properly perceiving art requires attention to detail, a huge generalization capacity, and recognizing both simple and complex visual patterns. To challenge the AI community, this work introduces a novel image classification task focused on museum art mediums, the MAMe dataset. Data is gathered from three different museums, and aggregated by art experts into 29 classes of medium (i.e. materials and techniques). For each class, MAMe provides a minimum of 850 images (700 for training) of high-resolution and variable shape. The combination of volume, resolution and shape allows MAMe to fill a void in current image classification challenges, empowering research in aspects so far overseen by the research community. After reviewing the singularity of MAMe in the context of current image classification tasks, a thorough description of the task is provided, together with dataset statistics. Baseline experiments are conducted using well-known architectures, to highlight both the feasibility and complexity of the task proposed. Finally, these baselines are inspected using explainability methods and expert knowledge, to gain insight on the challenges that remain ahead.