Abstract:Recent advances in artificial intelligence and the increasing need for powerful defensive measures in the domain of network security, have led to the adoption of deep learning approaches for use in network intrusion detection systems. These methods have achieved superior performance against conventional network attacks, which enable the deployment of practical security systems to unique and dynamic sectors. Adversarial machine learning, unfortunately, has recently shown that deep learning models are inherently vulnerable to adversarial modifications on their input data. Because of this susceptibility, the deep learning models deployed to power a network defense could in fact be the weakest entry point for compromising a network system. In this paper, we show that by modifying on average as little as 1.38 of the input features, an adversary can generate malicious inputs which effectively fool a deep learning based NIDS. Therefore, when designing such systems, it is crucial to consider the performance from not only the conventional network security perspective but also the adversarial machine learning domain.
Abstract:Like any large software system, a full-fledged DBMS offers an overwhelming amount of configuration knobs. These range from static initialisation parameters like buffer sizes, degree of concurrency, or level of replication to complex runtime decisions like creating a secondary index on a particular column or reorganising the physical layout of the store. To simplify the configuration, industry grade DBMSs are usually shipped with various advisory tools, that provide recommendations for given workloads and machines. However, reality shows that the actual configuration, tuning, and maintenance is usually still done by a human administrator, relying on intuition and experience. Recent work on deep reinforcement learning has shown very promising results in solving problems, that require such a sense of intuition. For instance, it has been applied very successfully in learning how to play complicated games with enormous search spaces. Motivated by these achievements, in this work we explore how deep reinforcement learning can be used to administer a DBMS. First, we will describe how deep reinforcement learning can be used to automatically tune an arbitrary software system like a DBMS by defining a problem environment. Second, we showcase our concept of NoDBA at the concrete example of index selection and evaluate how well it recommends indexes for given workloads.