Abstract:Recent advancements in machine learning have fueled research on multimodal tasks, such as for instance text-to-video and text-to-audio retrieval. These tasks require models to understand the semantic content of video and audio data, including objects, and characters. The models also need to learn spatial arrangements and temporal relationships. In this work, we analyse the temporal ordering of sounds, which is an understudied problem in the context of text-to-audio retrieval. In particular, we dissect the temporal understanding capabilities of a state-of-the-art model for text-to-audio retrieval on the AudioCaps and Clotho datasets. Additionally, we introduce a synthetic text-audio dataset that provides a controlled setting for evaluating temporal capabilities of recent models. Lastly, we present a loss function that encourages text-audio models to focus on the temporal ordering of events. Code and data are available at https://www.robots.ox.ac.uk/~vgg/research/audio-retrieval/dtu/.
Abstract:Video databases from the internet are a valuable source of text-audio retrieval datasets. However, given that sound and vision streams represent different "views" of the data, treating visual descriptions as audio descriptions is far from optimal. Even if audio class labels are present, they commonly are not very detailed, making them unsuited for text-audio retrieval. To exploit relevant audio information from video-text datasets, we introduce a methodology for generating audio-centric descriptions using Large Language Models (LLMs). In this work, we consider the egocentric video setting and propose three new text-audio retrieval benchmarks based on the EpicMIR and EgoMCQ tasks, and on the EpicSounds dataset. Our approach for obtaining audio-centric descriptions gives significantly higher zero-shot performance than using the original visual-centric descriptions. Furthermore, we show that using the same prompts, we can successfully employ LLMs to improve the retrieval on EpicSounds, compared to using the original audio class labels of the dataset. Finally, we confirm that LLMs can be used to determine the difficulty of identifying the action associated with a sound.
Abstract:The objectives of this work are cross-modal text-audio and audio-text retrieval, in which the goal is to retrieve the audio content from a pool of candidates that best matches a given written description and vice versa. Text-audio retrieval enables users to search large databases through an intuitive interface: they simply issue free-form natural language descriptions of the sound they would like to hear. To study the tasks of text-audio and audio-text retrieval, which have received limited attention in the existing literature, we introduce three challenging new benchmarks. We first construct text-audio and audio-text retrieval benchmarks from the AudioCaps and Clotho audio captioning datasets. Additionally, we introduce the SoundDescs benchmark, which consists of paired audio and natural language descriptions for a diverse collection of sounds that are complementary to those found in AudioCaps and Clotho. We employ these three benchmarks to establish baselines for cross-modal text-audio and audio-text retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into audio retrieval with free-form text queries. Code, audio features for all datasets used, and the \datasetName dataset will be made publicly available.
Abstract:We consider the task of retrieving audio using free-form natural language queries. To study this problem, which has received limited attention in the existing literature, we introduce challenging new benchmarks for text-based audio retrieval using text annotations sourced from the Audiocaps and Clotho datasets. We then employ these benchmarks to establish baselines for cross-modal audio retrieval, where we demonstrate the benefits of pre-training on diverse audio tasks. We hope that our benchmarks will inspire further research into cross-modal text-based audio retrieval with free-form text queries.
Abstract:We introduce QuerYD, a new large-scale dataset for retrieval and event localisation in video. A unique feature of our dataset is the availability of two audio tracks for each video: the original audio, and a high-quality spoken description of the visual content. The dataset is based on YouDescribe, a volunteer project that assists visually-impaired people by attaching voiced narrations to existing YouTube videos. This ever-growing collection of videos contains highly detailed, temporally aligned audio and text annotations. The content descriptions are more relevant than dialogue, and more detailed than previous description attempts, which can be observed to contain many superficial or uninformative descriptions. To demonstrate the utility of the QuerYD dataset, we show that it can be used to train and benchmark strong models for retrieval and event localisation. All data, code and models will be made available, and we hope that QuerYD inspires further research on video understanding with written and spoken natural language.