Abstract:The increasing popularity of online services has made Internet Traffic Classification a critical field of study. However, the rapid development of internet protocols and encryption limits usable data availability. This paper addresses the challenges of classifying encrypted internet traffic, focusing on the scarcity of open-source datasets and limitations of existing ones. We propose two Data Augmentation (DA) techniques to synthetically generate data based on real samples: Average augmentation and MTU augmentation. Both augmentations are aimed to improve the performance of the classifier, each from a different perspective: The Average augmentation aims to increase dataset size by generating new synthetic samples, while the MTU augmentation enhances classifier robustness to varying Maximum Transmission Units (MTUs). Our experiments, conducted on two well-known academic datasets and a commercial dataset, demonstrate the effectiveness of these approaches in improving model performance and mitigating constraints associated with limited and homogeneous datasets. Our findings underscore the potential of data augmentation in addressing the challenges of modern internet traffic classification. Specifically, we show that our augmentation techniques significantly enhance encrypted traffic classification models. This improvement can positively impact user Quality of Experience (QoE) by more accurately classifying traffic as video streaming (e.g., YouTube) or chat (e.g., Google Chat). Additionally, it can enhance Quality of Service (QoS) for file downloading activities (e.g., Google Docs).
Abstract:Encrypted network traffic Classification tackles the problem from different approaches and with different goals. One of the common approaches is using Machine learning or Deep Learning-based solutions on a fixed number of classes, leading to misclassification when an unknown class is given as input. One of the solutions for handling unknown classes is to retrain the model, however, retraining models every time they become obsolete is both resource and time-consuming. Therefore, there is a growing need to allow classification models to detect and adapt to new classes dynamically, without retraining, but instead able to detect new classes using few shots learning [1]. In this paper, we introduce Adaptive Classification By Retrieval CBR, a novel approach for encrypted network traffic classification. Our new approach is based on an ANN-based method, which allows us to effectively identify new and existing classes without retraining the model. The novel approach is simple, yet effective and achieved similar results to RF with up to 5% difference (usually less than that) in the classification tasks while having a slight decrease in the case of new samples (from new classes) without retraining. To summarize, the new method is a real-time classification, which can classify new classes without retraining. Furthermore, our solution can be used as a complementary solution alongside RF or any other machine/deep learning classification method, as an aggregated solution.
Abstract:With the advance in malware technology, attackers create new ways to hide their malicious code from antivirus services. One way to obfuscate an attack is to use common files as cover to hide the malicious scripts, so the malware will look like a legitimate file. Although cutting-edge Artificial Intelligence and content signature exist, evasive malware successfully bypasses next-generation malware detection using advanced methods like steganography. Some of the files commonly used to hide malware are image files (e.g., JPEG). In addition, some malware use steganography to hide malicious scripts or sensitive data in images. Steganography in images is difficult to detect even with specialized tools. Image-based attacks try to attack the user's device using malicious payloads or utilize image steganography to hide sensitive data inside legitimate images and leak it outside the user's device. Therefore in this paper, we present a novel Image Content Disarm and Reconstruction (ICDR). Our ICDR system removes potential malware, with a zero trust approach, while maintaining high image quality and file usability. By extracting the image data, removing it from the rest of the file, and manipulating the image pixels, it is possible to disable or remove the hidden malware inside the file.
Abstract:Internet traffic classification plays a key role in network visibility, Quality of Services (QoS), intrusion detection, Quality of Experience (QoE) and traffic-trend analyses. In order to improve privacy, integrity, confidentiality, and protocol obfuscation, the current traffic is based on encryption protocols, e.g., SSL/TLS. With the increased use of Machine-Learning (ML) and Deep-Learning (DL) models in the literature, comparison between different models and methods has become cumbersome and difficult due to a lack of a standardized framework. In this paper, we propose an open-source framework, named OSF-EIMTC, which can provide the full pipeline of the learning process. From the well-known datasets to extracting new and well-known features, it provides implementations of well-known ML and DL models (from the traffic classification literature) as well as evaluations. Such a framework can facilitate research in traffic classification domains, so that it will be more repeatable, reproducible, easier to execute, and will allow a more accurate comparison of well-known and novel features and models. As part of our framework evaluation, we demonstrate a variety of cases where the framework can be of use, utilizing multiple datasets, models, and feature sets. We show analyses of publicly available datasets and invite the community to participate in our open challenges using the OSF-EIMTC.
Abstract:Internet traffic classification is widely used to facilitate network management. It plays a crucial role in Quality of Services (QoS), Quality of Experience (QoE), network visibility, intrusion detection, and traffic trend analyses. While there is no theoretical guarantee that deep learning (DL)-based solutions perform better than classic machine learning (ML)-based ones, DL-based models have become the common default. This paper compares well-known DL-based and ML-based models and shows that in the case of malicious traffic classification, state-of-the-art DL-based solutions do not necessarily outperform the classical ML-based ones. We exemplify this finding using two well-known datasets for a varied set of tasks, such as: malware detection, malware family classification, detection of zero-day attacks, and classification of an iteratively growing dataset. Note that, it is not feasible to evaluate all possible models to make a concrete statement, thus, the above finding is not a recommendation to avoid DL-based models, but rather empirical proof that in some cases, there are more simplistic solutions, that may perform even better.
Abstract:Android malware is a continuously expanding threat to billions of mobile users around the globe. Detection systems are updated constantly to address these threats. However, a backlash takes the form of evasion attacks, in which an adversary changes malicious samples such that those samples will be misclassified as benign. This paper fully inspects a well-known Android malware detection system, MaMaDroid, which analyzes the control flow graph of the application. Changes to the portion of benign samples in the train set and models are considered to see their effect on the classifier. The changes in the ratio between benign and malicious samples have a clear effect on each one of the models, resulting in a decrease of more than 40% in their detection rate. Moreover, adopted ML models are implemented as well, including 5-NN, Decision Tree, and Adaboost. Exploration of the six models reveals a typical behavior in different cases, of tree-based models and distance-based models. Moreover, three novel attacks that manipulate the CFG and their detection rates are described for each one of the targeted models. The attacks decrease the detection rate of most of the models to 0%, with regards to different ratios of benign to malicious apps. As a result, a new version of MaMaDroid is engineered. This model fuses the CFG of the app and static analysis of features of the app. This improved model is proved to be robust against evasion attacks targeting both CFG-based models and static analysis models, achieving a detection rate of more than 90% against each one of the attacks.
Abstract:Desktops and laptops can be maliciously exploited to violate privacy. There are two main types of attack scenarios: active and passive. In this paper, we consider the passive scenario where the adversary does not interact actively with the device, but he is able to eavesdrop on the network traffic of the device from the network side. Most of the Internet traffic is encrypted and thus passive attacks are challenging. Previous research has shown that information can be extracted from encrypted multimedia streams. This includes video title classification of non HTTP adaptive streams (non-HAS). This paper presents an algorithm for encrypted HTTP adaptive video streaming title classification. We show that an external attacker can identify the video title from video HTTP adaptive streams (HAS) sites such as YouTube. To the best of our knowledge, this is the first work that shows this. We provide a large data set of 10000 YouTube video streams of 100 popular video titles (each title downloaded 100 times) as examples for this task. The dataset was collected under real-world network conditions. We present several machine algorithms for the task and run a through set of experiments, which shows that our classification accuracy is more than 95%. We also show that our algorithms are able to classify video titles that are not in the training set as unknown and some of the algorithms are also able to eliminate false prediction of video titles and instead report unknown. Finally, we evaluate our algorithms robustness to delays and packet losses at test time and show that a solution that uses SVM is the most robust against these changes given enough training data. We provide the dataset and the crawler for future research.
Abstract:The increasing popularity of HTTP adaptive video streaming services has dramatically increased bandwidth requirements on operator networks, which attempt to shape their traffic through Deep Packet Inspection (DPI). However, Google and certain content providers have started to encrypt their video services. As a result, operators often encounter difficulties in shaping their encrypted video traffic via DPI. This highlights the need for new traffic classification methods for encrypted HTTP adaptive video streaming to enable smart traffic shaping. These new methods will have to effectively estimate the quality representation layer and playout buffer. We present a new method and show for the first time that video quality representation classification for (YouTube) encrypted HTTP adaptive streaming is possible. We analyze the performance of this classification method with Safari over HTTPS. Based on a large number of offline and online traffic classification experiments, we demonstrate that it can independently classify, in real time, every video segment into one of the quality representation layers with 97.18% average accuracy.