Abstract:Since the appearance of Covid-19 in late 2019, Covid-19 has become an active research topic for the artificial intelligence (AI) community. One of the most interesting AI topics is Covid-19 analysis of medical imaging. CT-scan imaging is the most informative tool about this disease. This work is part of the 3nd COV19D competition for Covid-19 Severity Prediction. In order to deal with the big gap between the validation and test results that were shown in the previous version of this competition, we proposed to combine the prediction of 2D and 3D CNN predictions. For the 2D CNN approach, we propose 2B-InceptResnet architecture which consists of two paths for segmented lungs and infection of all slices of the input CT-scan, respectively. Each path consists of ConvLayer and Inception-ResNet pretrained model on ImageNet. For the 3D CNN approach, we propose hybrid-DeCoVNet architecture which consists of four blocks: Stem, four 3D-ResNet layers, Classification Head and Decision layer. Our proposed approaches outperformed the baseline approach in the validation data of the 3nd COV19D competition for Covid-19 Severity Prediction by 36%.
Abstract:In this work, we tackle the Dynamic Optimization Problem (DOP) of IA in a real-world application using a Dynamic Optimization Algorithm (DOA) called Fractal Decomposition Algorithm (FDA), introduced by recently. We used FDA to perform IA on CCTV camera feed from a tunnel. As the camera viewpoint can change by multiple reasons such as wind, maintenance, etc. the alignment is required to guarantee the correct functioning of video-based traffic security system.
Abstract:he greatest weakness of evolutionary algorithms, widely used today, is the premature convergence due to the loss of population diversity over generations. To overcome this problem, several algorithms have been proposed, such as the Graph-based Evolutionary Algorithm (GEA) \cite{1} which uses graphs to model the structure of the population, but also memetic or differential evolution algorithms \cite{2,3}, or diversity-based ones \cite{4,5} have been designed. These algorithms are based on multi-populations, or often rather focus on the self-tuning parameters, however, they become complex to tune because of their high number of parameters. In this paper, our approach consists of an evolutionary algorithm that allows a dynamic adaptation of the search operators based on a graph in order to limit the loss of diversity and reduce the design complexity.
Abstract:This paper presents a new implementation of deterministic multiobjective (MO) optimization called Multiobjective Fractal Decomposition Algorithm (Mo-FDA). The original algorithm was designed for mono-objective large scale continuous optimization problems. It is based on a divide and conquer strategy and a geometric fractal decomposition of the search space using hyperspheres. Then, to deal with MO problems a scalarization approach is used. In this work, a new approach has been developed on a multi-node environment using containers. The performance of Mo-FDA was compared to state of the art algorithms from the literature on classical benchmark of multi-objective optimization