Abstract:The advances in computer vision made possible by deep learning technology are increasingly being used in precision agriculture to automate the detection and classification of plant diseases. Symptoms of plant diseases are often seen on their leaves. The leaf images in existing datasets have been collected either under controlled conditions or in the field. The majority of previous studies have focused on identifying leaf diseases using images captured in controlled laboratory settings, often achieving high performance. However, methods aimed at detecting and classifying leaf diseases in field images have generally exhibited lower performance. The objective of this study is to evaluate the impact of a data augmentation approach that involves removing complex backgrounds from leaf images on the classification performance of apple leaf diseases in images captured under real world conditions. To achieve this objective, the lightweight pre-trained MobileNetV2 deep learning model was fine-tuned and subsequently used to evaluate the impact of expanding the training dataset with background-removed images on classification performance. Experimental results show that this augmentation strategy enhances classification accuracy. Specifically, using the Adam optimizer, the proposed method achieved a classification accuracy of 98.71% on the Plant Pathology database, representing an approximately 3% improvement and outperforming state-of-the-art methods. This demonstrates the effectiveness of background removal as a data augmentation technique for improving the robustness of disease classification models in real-world conditions.
Abstract:The demand for deploying deep convolutional neural networks (DCNNs) on resource-constrained devices for real-time applications remains substantial. However, existing state-of-the-art structured pruning methods often involve intricate implementations, require modifications to the original network architectures, and necessitate an extensive fine-tuning phase. To overcome these challenges, we propose a novel method that, for the first time, incorporates the concepts of charge and electrostatic force from physics into the training process of DCNNs. The magnitude of this force is directly proportional to the product of the charges of the convolution filter and the source filter, and inversely proportional to the square of the distance between them. We applied this electrostatic-like force to the convolution filters, either attracting filters with opposite charges toward non-zero weights or repelling filters with like charges toward zero weights. Consequently, filters subject to repulsive forces have their weights reduced to zero, enabling their removal, while the attractive forces preserve filters with significant weights that retain information. Unlike conventional methods, our approach is straightforward to implement, does not require any architectural modifications, and simultaneously optimizes weights and ranks filter importance, all without the need for extensive fine-tuning. We validated the efficacy of our method on modern DCNN architectures using the MNIST, CIFAR, and ImageNet datasets, achieving competitive performance compared to existing structured pruning approaches.