Abstract:The retrieval-augmented generation (RAG) enables retrieval of relevant information from an external knowledge source and allows large language models (LLMs) to answer queries over previously unseen document collections. However, it was demonstrated that traditional RAG applications perform poorly in answering multi-hop questions, which require retrieving and reasoning over multiple elements of supporting evidence. We introduce a new method called Multi-Meta-RAG, which uses database filtering with LLM-extracted metadata to improve the RAG selection of the relevant documents from various sources, relevant to the question. While database filtering is specific to a set of questions from a particular domain and format, we found out that Multi-Meta-RAG greatly improves the results on the MultiHop-RAG benchmark. The code is available at https://github.com/mxpoliakov/Multi-Meta-RAG.
Abstract:We present an optimization study of the Vision-Language Frontier Maps (VLFM) applied to the Object Goal Navigation task in robotics. Our work evaluates the efficiency and performance of various vision-language models, object detectors, segmentation models, and multi-modal comprehension and Visual Question Answering modules. Using the $\textit{val-mini}$ and $\textit{val}$ splits of Habitat-Matterport 3D dataset, we conduct experiments on a desktop with limited VRAM. We propose a solution that achieves a higher success rate (+1.55%) improving over the VLFM BLIP-2 baseline without substantial success-weighted path length loss while requiring $\textbf{2.3 times}$ less video memory. Our findings provide insights into balancing model performance and computational efficiency, suggesting effective deployment strategies for resource-limited environments.
Abstract:In this work, we tackle the Dynamic Optimization Problem (DOP) of IA in a real-world application using a Dynamic Optimization Algorithm (DOA) called Fractal Decomposition Algorithm (FDA), introduced by recently. We used FDA to perform IA on CCTV camera feed from a tunnel. As the camera viewpoint can change by multiple reasons such as wind, maintenance, etc. the alignment is required to guarantee the correct functioning of video-based traffic security system.