Abstract:Data driven segmentation is an important initial step of shape prior-based segmentation methods since it is assumed that the data term brings a curve to a plausible level so that shape and data terms can then work together to produce better segmentations. When purely data driven segmentation produces poor results, the final segmentation is generally affected adversely. One challenge faced by many existing data terms is due to the fact that they consider only pixel intensities to decide whether to assign a pixel to the foreground or to the background region. When the distributions of the foreground and background pixel intensities have significant overlap, such data terms become ineffective, as they produce uncertain results for many pixels in a test image. In such cases, using prior information about the spatial context of the object to be segmented together with the data term can bring a curve to a plausible stage, which would then serve as a good initial point to launch shape-based segmentation. In this paper, we propose a new segmentation approach that combines nonparametric context priors with a learned-intensity-based data term and nonparametric shape priors. We perform experiments for dendritic spine segmentation in both 2D and 3D 2-photon microscopy images. The experimental results demonstrate that using spatial context priors leads to significant improvements.
Abstract:Functional properties of neurons are strongly coupled with their morphology. Changes in neuronal activity alter morphological characteristics of dendritic spines. First step towards understanding the structure-function relationship is to group spines into main spine classes reported in the literature. Shape analysis of dendritic spines can help neuroscientists understand the underlying relationships. Due to unavailability of reliable automated tools, this analysis is currently performed manually which is a time-intensive and subjective task. Several studies on spine shape classification have been reported in the literature, however, there is an on-going debate on whether distinct spine shape classes exist or whether spines should be modeled through a continuum of shape variations. Another challenge is the subjectivity and bias that is introduced due to the supervised nature of classification approaches. In this paper, we aim to address these issues by presenting a clustering perspective. In this context, clustering may serve both confirmation of known patterns and discovery of new ones. We perform cluster analysis on two-photon microscopic images of spines using morphological, shape, and appearance based features and gain insights into the spine shape analysis problem. We use histogram of oriented gradients (HOG), disjunctive normal shape models (DNSM), morphological features, and intensity profile based features for cluster analysis. We use x-means to perform cluster analysis that selects the number of clusters automatically using the Bayesian information criterion (BIC). For all features, this analysis produces 4 clusters and we observe the formation of at least one cluster consisting of spines which are difficult to be assigned to a known class. This observation supports the argument of intermediate shape types.