Abstract:Books, while often rich in cultural insights, can also mirror societal biases of their eras - biases that Large Language Models (LLMs) may learn and perpetuate during training. We introduce a novel method to trace and quantify these biases using fine-tuned LLMs. We develop BookPAGE, a corpus comprising 593 fictional books across seven decades (1950-2019), to track bias evolution. By fine-tuning LLMs on books from each decade and using targeted prompts, we examine shifts in biases related to gender, sexual orientation, race, and religion. Our findings indicate that LLMs trained on decade-specific books manifest biases reflective of their times, with both gradual trends and notable shifts. For example, model responses showed a progressive increase in the portrayal of women in leadership roles (from 8% to 22%) from the 1950s to 2010s, with a significant uptick in the 1990s (from 4% to 12%), possibly aligning with third-wave feminism. Same-sex relationship references increased markedly from the 1980s to 2000s (from 0% to 10%), mirroring growing LGBTQ+ visibility. Concerningly, negative portrayals of Islam rose sharply in the 2000s (26% to 38%), likely reflecting post-9/11 sentiments. Importantly, we demonstrate that these biases stem mainly from the books' content and not the models' architecture or initial training. Our study offers a new perspective on societal bias trends by bridging AI, literary studies, and social science research.
Abstract:Zero-shot prompting techniques have significantly improved the performance of Large Language Models (LLMs). However, we lack a clear understanding of why zero-shot prompts are so effective. For example, in the prompt "Let's think step-by-step," is "think" or "step-by-step" more crucial to its success? Existing interpretability methods, such as gradient-based and attention-based approaches, are computationally intensive and restricted to open-source models. We introduce the ZIP score (Zero-shot Importance of Perturbation score), a versatile metric applicable to both open and closed-source models, based on systematic input word perturbations. Our experiments across four recent LLMs, seven widely-used prompts, and several tasks, reveal interesting patterns in word importance. For instance, while both 'step-by-step' and 'think' show high ZIP scores, which one is more influential depends on the model and task. We validate our method using controlled experiments and compare our results with human judgments, finding that proprietary models align more closely with human intuition regarding word significance. These findings enhance our understanding of LLM behavior and contribute to developing more effective zero-shot prompts and improved model analysis.
Abstract:As prompt engineering research rapidly evolves, evaluations beyond accuracy are crucial for developing cost-effective techniques. We present the Economical Prompting Index (EPI), a novel metric that combines accuracy scores with token consumption, adjusted by a user-specified cost concern level to reflect different resource constraints. Our study examines 6 advanced prompting techniques, including Chain-of-Thought, Self-Consistency, and Tree of Thoughts, across 10 widely-used language models and 4 diverse datasets. We demonstrate that approaches such as Self-Consistency often provide statistically insignificant gains while becoming cost-prohibitive. For example, on high-performing models like Claude 3.5 Sonnet, the EPI of simpler techniques like Chain-of-Thought (0.72) surpasses more complex methods like Self-Consistency (0.64) at slight cost concern levels. Our findings suggest a reevaluation of complex prompting strategies in resource-constrained scenarios, potentially reshaping future research priorities and improving cost-effectiveness for end-users.
Abstract:Large Language Models (LLMs) have shown impressive performance on various benchmarks, yet their ability to engage in deliberate reasoning remains questionable. We present NYT-Connections, a collection of 358 simple word classification puzzles derived from the New York Times Connections game. This benchmark is designed to penalize quick, intuitive "System 1" thinking, isolating fundamental reasoning skills. We evaluated six recent LLMs, a simple machine learning heuristic, and humans across three configurations: single-attempt, multiple attempts without hints, and multiple attempts with contextual hints. Our findings reveal a significant performance gap: even top-performing LLMs like GPT-4 fall short of human performance by nearly 30%. Notably, advanced prompting techniques such as Chain-of-Thought and Self-Consistency show diminishing returns as task difficulty increases. NYT-Connections uniquely combines linguistic isolation, resistance to intuitive shortcuts, and regular updates to mitigate data leakage, offering a novel tool for assessing LLM reasoning capabilities.
Abstract:This study explores the effectiveness of Large Language Models (LLMs) in creating personalized "mirror stories" that reflect and resonate with individual readers' identities, addressing the significant lack of diversity in literature. We present MirrorStories, a corpus of 1,500 personalized short stories generated by integrating elements such as name, gender, age, ethnicity, reader interest, and story moral. We demonstrate that LLMs can effectively incorporate diverse identity elements into narratives, with human evaluators identifying personalized elements in the stories with high accuracy. Through a comprehensive evaluation involving 26 diverse human judges, we compare the effectiveness of MirrorStories against generic narratives. We find that personalized LLM-generated stories not only outscore generic human-written and LLM-generated ones across all metrics of engagement (with average ratings of 4.22 versus 3.37 on a 5-point scale), but also achieve higher textual diversity while preserving the intended moral. We also provide analyses that include bias assessments and a study on the potential for integrating images into personalized stories.
Abstract:Mitigating explicit and implicit biases in Large Language Models (LLMs) has become a critical focus in the field of natural language processing. However, many current methodologies evaluate scenarios in isolation, without considering the broader context or the spectrum of potential biases within each situation. To address this, we introduce the Sensitivity Testing on Offensive Progressions (STOP) dataset, which includes 450 offensive progressions containing 2,700 unique sentences of varying severity that progressively escalate from less to more explicitly offensive. Covering a broad spectrum of 9 demographics and 46 sub-demographics, STOP ensures inclusivity and comprehensive coverage. We evaluate several leading closed- and open-source models, including GPT-4, Mixtral, and Llama 3. Our findings reveal that even the best-performing models detect bias inconsistently, with success rates ranging from 19.3% to 69.8%. We also demonstrate how aligning models with human judgments on STOP can improve model answer rates on sensitive tasks such as BBQ, StereoSet, and CrowS-Pairs by up to 191%, while maintaining or even improving performance. STOP presents a novel framework for assessing the complex nature of biases in LLMs, which will enable more effective bias mitigation strategies and facilitates the creation of fairer language models.
Abstract:As the use of Large Language Models (LLMs) becomes more widespread, understanding their self-evaluation of confidence in generated responses becomes increasingly important as it is integral to the reliability of the output of these models. We introduce the concept of Confidence-Probability Alignment, that connects an LLM's internal confidence, quantified by token probabilities, to the confidence conveyed in the model's response when explicitly asked about its certainty. Using various datasets and prompting techniques that encourage model introspection, we probe the alignment between models' internal and expressed confidence. These techniques encompass using structured evaluation scales to rate confidence, including answer options when prompting, and eliciting the model's confidence level for outputs it does not recognize as its own. Notably, among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment, with an average Spearman's $\hat{\rho}$ of 0.42, across a wide range of tasks. Our work contributes to the ongoing efforts to facilitate risk assessment in the application of LLMs and to further our understanding of model trustworthiness.
Abstract:Large Language Models (LLMs) have demonstrated remarkable success in tasks like the Winograd Schema Challenge (WSC), showcasing advanced textual common-sense reasoning. However, applying this reasoning to multimodal domains, where understanding text and images together is essential, remains a substantial challenge. To address this, we introduce WinoVis, a novel dataset specifically designed to probe text-to-image models on pronoun disambiguation within multimodal contexts. Utilizing GPT-4 for prompt generation and Diffusion Attentive Attribution Maps (DAAM) for heatmap analysis, we propose a novel evaluation framework that isolates the models' ability in pronoun disambiguation from other visual processing challenges. Evaluation of successive model versions reveals that, despite incremental advancements, Stable Diffusion 2.0 achieves a precision of 56.7% on WinoVis, only marginally surpassing random guessing. Further error analysis identifies important areas for future research aimed at advancing text-to-image models in their ability to interpret and interact with the complex visual world.
Abstract:Research on Large Language Models (LLMs) has often neglected subtle biases that, although less apparent, can significantly influence the models' outputs toward particular social narratives. This study addresses two such biases within LLMs: \textit{representative bias}, which denotes a tendency of LLMs to generate outputs that mirror the experiences of certain identity groups, and \textit{affinity bias}, reflecting the models' evaluative preferences for specific narratives or viewpoints. We introduce two novel metrics to measure these biases: the Representative Bias Score (RBS) and the Affinity Bias Score (ABS), and present the Creativity-Oriented Generation Suite (CoGS), a collection of open-ended tasks such as short story writing and poetry composition, designed with customized rubrics to detect these subtle biases. Our analysis uncovers marked representative biases in prominent LLMs, with a preference for identities associated with being white, straight, and men. Furthermore, our investigation of affinity bias reveals distinctive evaluative patterns within each model, akin to `bias fingerprints'. This trend is also seen in human evaluators, highlighting a complex interplay between human and machine bias perceptions.
Abstract:While Large Language Models (LLMs) excel at the Winograd Schema Challenge (WSC), a coreference resolution task testing common-sense reasoning through pronoun disambiguation, they struggle with instances that feature minor alterations or rewording. To address this, we introduce EvoGrad, an open-source platform that harnesses a human-in-the-loop approach to create a dynamic dataset tailored to such altered WSC instances. Leveraging ChatGPT's capabilities, we expand our task instances from 182 to 3,691, setting a new benchmark for diverse common-sense reasoning datasets. Additionally, we introduce the error depth metric, assessing model stability in dynamic tasks. Our results emphasize the challenge posed by EvoGrad: Even the best performing LLM, GPT-3.5, achieves an accuracy of 65.0% with an average error depth of 7.2, a stark contrast to human performance of 92. 8% accuracy without perturbation errors. This highlights ongoing model limitations and the value of dynamic datasets in uncovering them.