Abstract:The emergence of Large Language Models (LLMs) as chat assistants capable of generating human-like conversations has amplified the need for robust evaluation methods, particularly for open-ended tasks. Conventional metrics like BLEU and ROUGE, while useful, are increasingly inadequate for capturing the subtle semantics and contextual richness of such generative outputs. We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges. Through experiments on three open-ended question-answering tasks, we demonstrate that combining multiple LLMs-as-judges significantly improves the reliability and accuracy of evaluations, particularly in complex tasks where a single model might struggle. Our findings reveal a strong correlation with human evaluations, establishing our method as a viable and effective alternative to traditional metrics and human judgments, particularly in the context of LLM-based chat assistants where the complexity and diversity of responses challenge existing benchmarks.
Abstract:Scale is often attributed as one of the factors that cause an increase in the performance of LLMs, resulting in models with billion and trillion parameters. One of the limitations of such large models is the high computational requirements that limit their usage, deployment, and debugging in resource-constrained scenarios. Two commonly used alternatives to bypass these limitations are to use the smaller versions of LLMs (e.g. Llama 7B instead of Llama 70B) and lower the memory requirements by using quantization. While these approaches effectively address the limitation of resources, their impact on model performance needs thorough examination. In this study, we perform a comprehensive evaluation to investigate the effect of model scale and quantization on the performance. We experiment with two major families of open-source instruct models ranging from 7 billion to 70 billion parameters. Our extensive zero-shot experiments across various tasks including natural language understanding, reasoning, misinformation detection, and hallucination reveal that larger models generally outperform their smaller counterparts, suggesting that scale remains an important factor in enhancing performance. We found that larger models show exceptional resilience to precision reduction and can maintain high accuracy even at 4-bit quantization for numerous tasks and they serve as a better solution than using smaller models at high precision under similar memory requirements.
Abstract:Ethics in AI becomes a global topic of interest for both policymakers and academic researchers. In the last few years, various research organizations, lawyers, think tankers and regulatory bodies get involved in developing AI ethics guidelines and principles. However, there is still debate about the implications of these principles. We conducted a systematic literature review (SLR) study to investigate the agreement on the significance of AI principles and identify the challenging factors that could negatively impact the adoption of AI ethics principles. The results reveal that the global convergence set consists of 22 ethical principles and 15 challenges. Transparency, privacy, accountability and fairness are identified as the most common AI ethics principles. Similarly, lack of ethical knowledge and vague principles are reported as the significant challenges for considering ethics in AI. The findings of this study are the preliminary inputs for proposing a maturity model that assess the ethical capabilities of AI systems and provide best practices for further improvements.