Abstract:Embodied interaction has been introduced to human-robot interaction (HRI) as a type of teleoperation, in which users control robot arms with bodily action via handheld controllers or haptic gloves. Embodied teleoperation has made robot control intuitive to non-technical users, but differences between humans' and robots' capabilities \eg ranges of motion and response time, remain challenging. In response, we present Arm Robot, an embodied robot arm teleoperation system that helps users tackle human-robot discrepancies. Specifically, Arm Robot (1) includes AR visualization as real-time feedback on temporal and spatial discrepancies, and (2) allows users to change observing perspectives and expand action space. We conducted a user study (N=18) to investigate the usability of the Arm Robot and learn how users perceive the embodiment. Our results show users could use Arm Robot's features to effectively control the robot arm, providing insights for continued work in embodied HRI.
Abstract:Electronic-photonic computing systems offer immense potential in energy-efficient artificial intelligence (AI) acceleration tasks due to the superior computing speed and efficiency of optics, especially for real-time, low-energy deep neural network (DNN) inference tasks on resource-restricted edge platforms. However, current optical neural accelerators based on foundry-available devices and conventional system architecture still encounter a performance gap compared to highly customized electronic counterparts. To bridge the performance gap due to lack of domain specialization, we present a time-multiplexed dynamic photonic tensor accelerator, dubbed TeMPO, with cross-layer device/circuit/architecture customization. At the device level, we present foundry-compatible, customized photonic devices, including a slow-light electro-optic modulator with experimental demonstration, optical splitters, and phase shifters that significantly reduce the footprint and power in input encoding and dot-product calculation. At the circuit level, partial products are hierarchically accumulated via parallel photocurrent aggregation, lightweight capacitive temporal integration, and sequential digital summation, considerably relieving the analog-to-digital conversion bottleneck. We also employ a multi-tile, multi-core architecture to maximize hardware sharing for higher efficiency. Across diverse edge AI workloads, TeMPO delivers digital-comparable task accuracy with superior quantization/noise tolerance. We achieve a 368.6 TOPS peak performance, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm$^2$ compute density, pushing the Pareto frontier in edge AI hardware. This work signifies the power of cross-layer co-design and domain-specific customization, paving the way for future electronic-photonic accelerators with even greater performance and efficiency.