Abstract:We propose a formal model for counterfactual estimation with unobserved confounding in "data-rich" settings, i.e., where there are a large number of units and a large number of measurements per unit. Our model provides a bridge between the structural causal model view of causal inference common in the graphical models literature with that of the latent factor model view common in the potential outcomes literature. We show how classic models for potential outcomes and treatment assignments fit within our framework. We provide an identification argument for the average treatment effect, the average treatment effect on the treated, and the average treatment effect on the untreated. For any estimator that has a fast enough estimation error rate for a certain nuisance parameter, we establish it is consistent for these various causal parameters. We then show principal component regression is one such estimator that leads to consistent estimation, and we analyze the minimal smoothness required of the potential outcomes function for consistency.
Abstract:This article introduces a new framework for estimating average treatment effects under unobserved confounding in modern data-rich environments featuring large numbers of units and outcomes. The proposed estimator is doubly robust, combining outcome imputation, inverse probability weighting, and a novel cross-fitting procedure for matrix completion. We derive finite-sample and asymptotic guarantees, and show that the error of the new estimator converges to a mean-zero Gaussian distribution at a parametric rate. Simulation results demonstrate the practical relevance of the formal properties of the estimators analyzed in this article.
Abstract:Business/policy decisions are often based on evidence from randomized experiments and observational studies. In this article we propose an empirical framework to estimate the value of evidence-based decision making (EBDM) and the return on the investment in statistical precision.
Abstract:Many applied settings in empirical economics involve simultaneous estimation of a large number of parameters. In particular, applied economists are often interested in estimating the effects of many-valued treatments (like teacher effects or location effects), treatment effects for many groups, and prediction models with many regressors. In these settings, machine learning methods that combine regularized estimation and data-driven choices of regularization parameters are useful to avoid over-fitting. In this article, we analyze the performance of a class of machine learning estimators that includes ridge, lasso and pretest in contexts that require simultaneous estimation of many parameters. Our analysis aims to provide guidance to applied researchers on (i) the choice between regularized estimators in practice and (ii) data-driven selection of regularization parameters. To address (i), we characterize the risk (mean squared error) of regularized estimators and derive their relative performance as a function of simple features of the data generating process. To address (ii), we show that data-driven choices of regularization parameters, based on Stein's unbiased risk estimate or on cross-validation, yield estimators with risk uniformly close to the risk attained under the optimal (unfeasible) choice of regularization parameters. We use data from recent examples in the empirical economics literature to illustrate the practical applicability of our results.