Abstract:Hyperspectral image (HSI) clustering has been a fundamental but challenging task with zero training labels. Currently, some deep graph clustering methods have been successfully explored for HSI due to their outstanding performance in effective spatial structural information encoding. Nevertheless, insufficient structural information utilization, poor feature presentation ability, and weak graph update capability limit their performance. Thus, in this paper, a homophily structure graph learning with an adaptive filter clustering method (AHSGC) for HSI is proposed. Specifically, homogeneous region generation is first developed for HSI processing and constructing the original graph. Afterward, an adaptive filter graph encoder is designed to adaptively capture the high and low frequency features on the graph for subsequence processing. Then, a graph embedding clustering self-training decoder is developed with KL Divergence, with which the pseudo-label is generated for network training. Meanwhile, homophily-enhanced structure learning is introduced to update the graph according to the clustering task, in which the orient correlation estimation is adopted to estimate the node connection, and graph edge sparsification is designed to adjust the edges in the graph dynamically. Finally, a joint network optimization is introduced to achieve network self-training and update the graph. The K-means is adopted to express the latent features. Extensive experiments and repeated comparative analysis have verified that our AHSGC contains high clustering accuracy, low computational complexity, and strong robustness. The code source will be available at https://github.com/DY-HYX.
Abstract:Efficient extraction of spectral sequences and geospatial information has always been a hot topic in hyperspectral image classification. In terms of spectral sequence feature capture, RNN and Transformer have become mainstream classification frameworks due to their long-range feature capture capabilities. In terms of spatial information aggregation, CNN enhances the receptive field to retain integrated spatial information as much as possible. However, the spectral feature-capturing architectures exhibit low computational efficiency, and CNNs lack the flexibility to perceive spatial contextual information. To address these issues, this paper proposes GraphMamba--an efficient graph structure learning vision Mamba classification framework that fully considers HSI characteristics to achieve deep spatial-spectral information mining. Specifically, we propose a novel hyperspectral visual GraphMamba processing paradigm (HVGM) that preserves spatial-spectral features by constructing spatial-spectral cubes and utilizes linear spectral encoding to enhance the operability of subsequent tasks. The core components of GraphMamba include the HyperMamba module for improving computational efficiency and the SpectralGCN module for adaptive spatial context awareness. The HyperMamba mitigates clutter interference by employing the global mask (GM) and introduces a parallel training inference architecture to alleviate computational bottlenecks. The SpatialGCN incorporates weighted multi-hop aggregation (WMA) spatial encoding to focus on highly correlated spatial structural features, thus flexibly aggregating contextual information while mitigating spatial noise interference. Extensive experiments were conducted on three different scales of real HSI datasets, and compared with the state-of-the-art classification frameworks, GraphMamba achieved optimal performance.
Abstract:Anchor-based detectors have been continuously developed for object detection. However, the individual anchor box makes it difficult to predict the boundary's offset accurately. Instead of taking each bounding box as a closed individual, we consider using multiple boxes together to get prediction boxes. To this end, this paper proposes the \textbf{Box Decouple-Couple(BDC) strategy} in the inference, which no longer discards the overlapping boxes, but decouples the corner points of these boxes. Then, according to each corner's score, we couple the corner points to select the most accurate corner pairs. To meet the BDC strategy, a simple but novel model is designed named the \textbf{Anchor-Intermediate Detector(AID)}, which contains two head networks, i.e., an anchor-based head and an anchor-free \textbf{Corner-aware head}. The corner-aware head is able to score the corners of each bounding box to facilitate the coupling between corner points. Extensive experiments on MS COCO show that the proposed anchor-intermediate detector respectively outperforms their baseline RetinaNet and GFL method by $\sim$2.4 and $\sim$1.2 AP on the MS COCO test-dev dataset without any bells and whistles. Code is available at: https://github.com/YilongLv/AID.