Abstract:While large language models (LLMs) have shown remarkable capability to generate convincing text across diverse domains, concerns around its potential risks have highlighted the importance of understanding the rationale behind text generation. We present LLM Attributor, a Python library that provides interactive visualizations for training data attribution of an LLM's text generation. Our library offers a new way to quickly attribute an LLM's text generation to training data points to inspect model behaviors, enhance its trustworthiness, and compare model-generated text with user-provided text. We describe the visual and interactive design of our tool and highlight usage scenarios for LLaMA2 models fine-tuned with two different datasets: online articles about recent disasters and finance-related question-answer pairs. Thanks to LLM Attributor's broad support for computational notebooks, users can easily integrate it into their workflow to interactively visualize attributions of their models. For easier access and extensibility, we open-source LLM Attributor at https://github.com/poloclub/ LLM-Attribution. The video demo is available at https://youtu.be/mIG2MDQKQxM.
Abstract:Large language models (LLMs) require well-crafted prompts for effective use. Prompt engineering, the process of designing prompts, is challenging, particularly for non-experts who are less familiar with AI technologies. While researchers have proposed techniques and tools to assist LLM users in prompt design, these works primarily target AI application developers rather than non-experts. To address this research gap, we propose social prompt engineering, a novel paradigm that leverages social computing techniques to facilitate collaborative prompt design. To investigate social prompt engineering, we introduce Wordflow, an open-source and social text editor that enables everyday users to easily create, run, share, and discover LLM prompts. Additionally, by leveraging modern web technologies, Wordflow allows users to run LLMs locally and privately in their browsers. Two usage scenarios highlight how social prompt engineering and our tool can enhance laypeople's interaction with LLMs. Wordflow is publicly accessible at https://poloclub.github.io/wordflow.