Abstract:Over a billion users across the globe interact with AI systems engineered with increasing sophistication to mimic human traits. This shift has triggered urgent debate regarding Anthropomorphism, the attribution of human characteristics to synthetic agents, and its potential to induce misplaced trust or emotional dependency. However, the causal link between more humanlike AI design and subsequent effects on engagement and trust has not been tested in realistic human-AI interactions with a global user pool. Prevailing safety frameworks continue to rely on theoretical assumptions derived from Western populations, overlooking the global diversity of AI users. Here, we address these gaps through two large-scale cross-national experiments (N=3,500) across 10 diverse nations, involving real-time and open-ended interactions with an AI system. We find that when evaluating an AI's human-likeness, users focus less on the kind of theoretical aspects often cited in policy (e.g., sentience or consciousness), but rather applied, interactional cues like conversation flow or understanding the user's perspective. We also experimentally demonstrate that humanlike design levers can causally increase anthropomorphism among users; however, we do not find that humanlike design universally increases behavioral measures for user engagement and trust, as previous theoretical work suggests. Instead, part of the connection between human-likeness and behavioral outcomes is fractured by culture: specific design choices that foster self-reported trust in AI-systems in some populations (e.g., Brazil) may trigger the opposite result in others (e.g., Japan). Our findings challenge prevailing narratives of inherent risk in humanlike AI design. Instead, we identify a nuanced, culturally mediated landscape of human-AI interaction, which demands that we move beyond a one-size-fits-all approach in AI governance.




Abstract:Perception of offensiveness is inherently subjective, shaped by the lived experiences and socio-cultural values of the perceivers. Recent years have seen substantial efforts to build AI-based tools that can detect offensive language at scale, as a means to moderate social media platforms, and to ensure safety of conversational AI technologies such as ChatGPT and Bard. However, existing approaches treat this task as a technical endeavor, built on top of data annotated for offensiveness by a global crowd workforce without any attention to the crowd workers' provenance or the values their perceptions reflect. We argue that cultural and psychological factors play a vital role in the cognitive processing of offensiveness, which is critical to consider in this context. We re-frame the task of determining offensiveness as essentially a matter of moral judgment -- deciding the boundaries of ethically wrong vs. right language within an implied set of socio-cultural norms. Through a large-scale cross-cultural study based on 4309 participants from 21 countries across 8 cultural regions, we demonstrate substantial cross-cultural differences in perceptions of offensiveness. More importantly, we find that individual moral values play a crucial role in shaping these variations: moral concerns about Care and Purity are significant mediating factors driving cross-cultural differences. These insights are of crucial importance as we build AI models for the pluralistic world, where the values they espouse should aim to respect and account for moral values in diverse geo-cultural contexts.
Abstract:Stereotype benchmark datasets are crucial to detect and mitigate social stereotypes about groups of people in NLP models. However, existing datasets are limited in size and coverage, and are largely restricted to stereotypes prevalent in the Western society. This is especially problematic as language technologies gain hold across the globe. To address this gap, we present SeeGULL, a broad-coverage stereotype dataset, built by utilizing generative capabilities of large language models such as PaLM, and GPT-3, and leveraging a globally diverse rater pool to validate the prevalence of those stereotypes in society. SeeGULL is in English, and contains stereotypes about identity groups spanning 178 countries across 8 different geo-political regions across 6 continents, as well as state-level identities within the US and India. We also include fine-grained offensiveness scores for different stereotypes and demonstrate their global disparities. Furthermore, we include comparative annotations about the same groups by annotators living in the region vs. those that are based in North America, and demonstrate that within-region stereotypes about groups differ from those prevalent in North America. CONTENT WARNING: This paper contains stereotype examples that may be offensive.