Abstract:Uncertainty quantification (UQ) methods play an important role in reducing errors in weather forecasting. Conventional approaches in UQ for weather forecasting rely on generating an ensemble of forecasts from physics-based simulations to estimate the uncertainty. However, it is computationally expensive to generate many forecasts to predict real-time extreme weather events. Evidential Deep Learning (EDL) is an uncertainty-aware deep learning approach designed to provide confidence about its predictions using only one forecast. It treats learning as an evidence acquisition process where more evidence is interpreted as increased predictive confidence. We apply EDL to storm forecasting using real-world weather datasets and compare its performance with traditional methods. Our findings indicate that EDL not only reduces computational overhead but also enhances predictive uncertainty. This method opens up novel opportunities in research areas such as climate risk assessment, where quantifying the uncertainty about future climate is crucial.
Abstract:Fast screening of drug molecules based on the ligand binding affinity is an important step in the drug discovery pipeline. Graph neural fingerprint is a promising method for developing molecular docking surrogates with high throughput and great fidelity. In this study, we built a COVID-19 drug docking dataset of about 300,000 drug candidates on 23 coronavirus protein targets. With this dataset, we trained graph neural fingerprint docking models for high-throughput virtual COVID-19 drug screening. The graph neural fingerprint models yield high prediction accuracy on docking scores with the mean squared error lower than $0.21$ kcal/mol for most of the docking targets, showing significant improvement over conventional circular fingerprint methods. To make the neural fingerprints transferable for unknown targets, we also propose a transferable graph neural fingerprint method trained on multiple targets. With comparable accuracy to target-specific graph neural fingerprint models, the transferable model exhibits superb training and data efficiency. We highlight that the impact of this study extends beyond COVID-19 dataset, as our approach for fast virtual ligand screening can be easily adapted and integrated into a general machine learning-accelerated pipeline to battle future bio-threats.