Abstract:The Transformer has quickly become the dominant architecture for various pattern recognition tasks due to its capacity for long-range representation. However, transformers are data-hungry models and need large datasets for training. In Handwritten Text Recognition (HTR), collecting a massive amount of labeled data is a complicated and expensive task. In this paper, we propose a lite transformer architecture for full-page multi-script handwriting recognition. The proposed model comes with three advantages: First, to solve the common problem of data scarcity, we propose a lite transformer model that can be trained on a reasonable amount of data, which is the case of most HTR public datasets, without the need for external data. Second, it can learn the reading order at page-level thanks to a curriculum learning strategy, allowing it to avoid line segmentation errors, exploit a larger context and reduce the need for costly segmentation annotations. Third, it can be easily adapted to other scripts by applying a simple transfer-learning process using only page-level labeled images. Extensive experiments on different datasets with different scripts (French, English, Spanish, and Arabic) show the effectiveness of the proposed model.
Abstract:Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available.