Abstract:Open-vocabulary 3D object detection for autonomous driving aims to detect novel objects beyond the predefined training label sets in point cloud scenes. Existing approaches achieve this by connecting traditional 3D object detectors with vision-language models (VLMs) to regress 3D bounding boxes for novel objects and perform open-vocabulary classification through cross-modal alignment between 3D and 2D features. However, achieving robust cross-modal alignment remains a challenge due to semantic inconsistencies when generating corresponding 3D and 2D feature pairs. To overcome this challenge, we present OV-SCAN, an Open-Vocabulary 3D framework that enforces Semantically Consistent Alignment for Novel object discovery. OV-SCAN employs two core strategies: discovering precise 3D annotations and filtering out low-quality or corrupted alignment pairs (arising from 3D annotation, occlusion-induced, or resolution-induced noise). Extensive experiments on the nuScenes dataset demonstrate that OV-SCAN achieves state-of-the-art performance.
Abstract:In this work, we study the problem of object re-identification (ReID) in a 3D multi-object tracking (MOT) context, by learning to match pairs of objects from cropped (e.g., using their predicted 3D bounding boxes) point cloud observations. We are not concerned with SOTA performance for 3D MOT, however. Instead, we seek to answer the following question: In a realistic tracking by-detection context, how does object ReID from point clouds perform relative to ReID from images? To enable such a study, we propose a lightweight matching head that can be concatenated to any set or sequence processing backbone (e.g., PointNet or ViT), creating a family of comparable object ReID networks for both modalities. Run in siamese style, our proposed point-cloud ReID networks can make thousands of pairwise comparisons in real-time (10 hz). Our findings demonstrate that their performance increases with higher sensor resolution and approaches that of image ReID when observations are sufficiently dense. Additionally, we investigate our network's ability to enhance 3D multi-object tracking (MOT), showing that our point-cloud ReID networks can successfully re-identify objects which led a strong motion-based tracker into error. To our knowledge, we are the first to study real-time object re-identification from point clouds in a 3D multi-object tracking context.