Abstract:Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics and AI, with numerous applications in real-world scenarios. One such scenario is filming scenes with multiple actors, where the goal is to capture the scene from multiple angles simultaneously. Here, we present a formation-based filming directive of task assignment followed by a Conflict-Based MAPF algorithm for efficient path planning of multiple agents to achieve filming objectives while avoiding collisions. We propose an extension to the standard MAPF formulation to accommodate actor-specific requirements and constraints. Our approach incorporates Conflict-Based Search, a widely used heuristic search technique for solving MAPF problems. We demonstrate the effectiveness of our approach through experiments on various MAPF scenarios in a simulated environment. The proposed algorithm enables the efficient online task assignment of formation-based filming to capture dynamic scenes, making it suitable for various filming and coverage applications.
Abstract:Deployment of teams of aerial robots could enable large-scale filming of dynamic groups of people (actors) in complex environments for novel applications in areas such as team sports and cinematography. Toward this end, methods for submodular maximization via sequential greedy planning can be used for scalable optimization of camera views across teams of robots but face challenges with efficient coordination in cluttered environments. Obstacles can produce occlusions and increase chances of inter-robot collision which can violate requirements for near-optimality guarantees. To coordinate teams of aerial robots in filming groups of people in dense environments, a more general view-planning approach is required. We explore how collision and occlusion impact performance in filming applications through the development of a multi-robot multi-actor view planner with an occlusion-aware objective for filming groups of people and compare with a greedy formation planner. To evaluate performance, we plan in five test environments with complex multiple-actor behaviors. Compared with a formation planner, our sequential planner generates 14% greater view reward over the actors for three scenarios and comparable performance to formation planning on two others. We also observe near identical performance of sequential planning both with and without inter-robot collision constraints. Overall, we demonstrate effective coordination of teams of aerial robots for filming groups that may split, merge, or spread apart and in environments cluttered with obstacles that may cause collisions or occlusions.