Abstract:Even with several advancements in multilingual modeling, it is challenging to recognize multiple languages using a single neural model, without knowing the input language and most multilingual models assume the availability of the input language. In this work, we propose a novel bilingual end-to-end (E2E) modeling approach, where a single neural model can recognize both languages and also support switching between the languages, without any language input from the user. The proposed model has shared encoder and prediction networks, with language-specific joint networks that are combined via a self-attention mechanism. As the language-specific posteriors are combined, it produces a single posterior probability over all the output symbols, enabling a single beam search decoding and also allowing dynamic switching between the languages. The proposed approach outperforms the conventional bilingual baseline with 13.3%, 8.23% and 1.3% word error rate relative reduction on Hindi, English and code-mixed test sets, respectively.
Abstract:Handed Shearing Auxetics (HSA) are a promising structure for making electrically driven robots with distributed compliance that convert a motors rotation and torque into extension and force. We overcame past limitations on the range of actuation, blocked force, and stiffness by focusing on two key design parameters: the point of an HSA's auxetic trajectory that is energetically preferred, and the number of cells along the HSAs length. Modeling the HSA as a programmable spring, we characterize the effect of both on blocked force, minimum energy length, spring constant, angle range and holding torque. We also examined the effect viscoelasticity has on actuation forces over time. By varying the auxetic trajectory point, we were able to make actuators that can push, pull, or do both. We expanded the range of forces possible from 5N to 150N, and the range of stiffness from 2 N/mm to 89 N/mm. For a fixed point on the auxetic trajectory, we found decreasing length can improve force output, at the expense of needing higher torques, and having a shorter throw. We also found that the viscoelastic effects can limit the amount of force a 3D printed HSA can apply over time.