Abstract:Availability poisons exploit supervised learning (SL) algorithms by introducing class-related shortcut features in images such that models trained on poisoned data are useless for real-world datasets. Self-supervised learning (SSL), which utilizes augmentations to learn instance discrimination, is regarded as a strong defense against poisoned data. However, by extending the study of SSL across multiple poisons on the CIFAR-10 and ImageNet-100 datasets, we demonstrate that it often performs poorly, far below that of training on clean data. Leveraging the vulnerability of SL to poison attacks, we introduce adversarial training (AT) on SL to obfuscate poison features and guide robust feature learning for SSL. Our proposed defense, designated VESPR (Vulnerability Exploitation of Supervised Poisoning for Robust SSL), surpasses the performance of six previous defenses across seven popular availability poisons. VESPR displays superior performance over all previous defenses, boosting the minimum and average ImageNet-100 test accuracies of poisoned models by 16% and 9%, respectively. Through analysis and ablation studies, we elucidate the mechanisms by which VESPR learns robust class features.
Abstract:Continual learning involves training neural networks incrementally for new tasks while retaining the knowledge of previous tasks. However, efficiently fine-tuning the model for sequential tasks with minimal computational resources remains a challenge. In this paper, we propose Task Incremental Continual Learning (TI-CL) of audio classifiers with both parameter-efficient and compute-efficient Audio Spectrogram Transformers (AST). To reduce the trainable parameters without performance degradation for TI-CL, we compare several Parameter Efficient Transfer (PET) methods and propose AST with Convolutional Adapters for TI-CL, which has less than 5% of trainable parameters of the fully fine-tuned counterparts. To reduce the computational complexity, we introduce a novel Frequency-Time factorized Attention (FTA) method that replaces the traditional self-attention in transformers for audio spectrograms. FTA achieves competitive performance with only a factor of the computations required by Global Self-Attention (GSA). Finally, we formulate our method for TI-CL, called Adapter Incremental Continual Learning (AI-CL), as a combination of the "parameter-efficient" Convolutional Adapter and the "compute-efficient" FTA. Experiments on ESC-50, SpeechCommandsV2 (SCv2), and Audio-Visual Event (AVE) benchmarks show that our proposed method prevents catastrophic forgetting in TI-CL while maintaining a lower computational budget.