Federated learning provides a promising privacy-preserving way for utilizing large-scale private edge data from massive Internet-of-Things (IoT) devices. While existing research extensively studied optimizing the learning process, computing efficiency, and communication overhead, one important and often overlooked aspect is that participants contribute predictive knowledge from their data, impacting the quality of the federated models learned. While FedAvg treats each client equally and assigns weight solely based on the number of samples, the diversity of samples on each client could greatly affect the local update performance and the final aggregated model. In this paper, we propose a novel approach to address this issue by introducing a Weighted Averaging (WeiAvg) framework that emphasizes updates from high-diversity clients and diminishes the influence of those from low-diversity clients. Specifically, we introduced a projection-based approximation method to estimate the diversity of client data, instead of the computation of an entropy. We use the approximation because the locally computed entropy may not be transmitted due to excess privacy risk. Extensive experimental results show that WeiAvg converges faster and achieves higher accuracy than the original FedAvg algorithm and FedProx.