Interactive robots navigating photo-realistic environments face challenges underlying vision-and-language navigation (VLN), but in addition, they need to be trained to handle the dynamic nature of dialogue. However, research in Cooperative Vision-and-Dialog Navigation (CVDN), where a navigator interacts with a guide in natural language in order to reach a goal, treats the dialogue history as a VLN-style static instruction. In this paper, we present VISITRON, a navigator better suited to the interactive regime inherent to CVDN by being trained to: i) identify and associate object-level concepts and semantics between the environment and dialogue history, ii) identify when to interact vs. navigate via imitation learning of a binary classification head. We perform extensive ablations with VISITRON to gain empirical insights and improve performance on CVDN. VISITRON is competitive with models on the static CVDN leaderboard. We also propose a generalized interactive regime to fine-tune and evaluate VISITRON and future such models with pre-trained guides for adaptability.