In this work, we address the challenging video scene parsing problem by developing effective representation learning methods given limited parsing annotations. In particular, we contribute two novel methods that constitute a unified parsing framework. (1) \textbf{Predictive feature learning}} from nearly unlimited unlabeled video data. Different from existing methods learning features from single frame parsing, we learn spatiotemporal discriminative features by enforcing a parsing network to predict future frames and their parsing maps (if available) given only historical frames. In this way, the network can effectively learn to capture video dynamics and temporal context, which are critical clues for video scene parsing, without requiring extra manual annotations. (2) \textbf{Prediction steering parsing}} architecture that effectively adapts the learned spatiotemporal features to scene parsing tasks and provides strong guidance for any off-the-shelf parsing model to achieve better video scene parsing performance. Extensive experiments over two challenging datasets, Cityscapes and Camvid, have demonstrated the effectiveness of our methods by showing significant improvement over well-established baselines.